Automatic Generation of Control Parameters for the Threshold Accepting Algorithm

  • Joaquín Pérez 
  • Rodolfo Pazos 
  • Laura Velez 
  • Guillermo Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2313)


In this article a new method to obtain the control parameters values for the Threshold Accepting algorithm is presented, which is independent of the problem domain and size. This approach differs from the traditional methods that require knowing first the problem domain, and then knowing how to select the parameters values to solve specific problem instances. The proposed method is based on a sample of problem instances, whose solution allows us to characterize the problem and to define the parameters. To test the method the combinatorial optimization model called DFAR was solved using the Threshold Accepting algorithm. The experimental results show that it is feasible to automatically obtain the parameters for a heuristic algorithm, which will produce satisfactory results, even though the kind of problem to solve is not known. We consider that the proposed method principles can be applied to the definition of control parameters for other heuristic algorithms.


Simulated Annealing Control Parameter Problem Domain Simulated Annealing Algorithm Automatic Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.: Equation of State Calculations by Fasting Computing Machines. J. Chemical Phys., Vol. 21, (1953).Google Scholar
  2. 2.
    Ceri, S., Pelagatti, G.: Distributed Databases: Principles & Systems. McGraw-Hill, New York (1984).Google Scholar
  3. 3.
    Dueck, G., Scheuer, T.: Threshold Accepting: a General Purpose optimization Algorithm Appearing Superior to Simulated Annealing. Journal of Computational Physics, Vol. 90 (1990) 161–175.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beasley, J.F., Dowsland, K., Glover, F., Laguna, M.: Modern Heuristic Techniques for Combinatorial Problems. Colin R. Reeves, New York (1993).Google Scholar
  5. 5.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: optimization by Simulated Annealing. Science 220 (1983) 671–680.CrossRefMathSciNetGoogle Scholar
  6. 6.
    March, S.T., Rho, S.: Allocating Data and operations to Nodes in Distributed Database Design. Transactions on Knowledge and Data Engineering, Vol. 7, No. 2 (1995).Google Scholar
  7. 7.
    Morales, L., Garduño, R., Romero, D.: The Multiple-Minima Problem in Small Peptides Revisited: the Threshold Accepting Approach. Journal of Biomolecular Structure & Dynamics, Vol. 9, No. 5 (1992)951–957.Google Scholar
  8. 8.
    Adler, D.: Genetic Algorithms and Simulated Annealing: a Marriage Proposal. IEEE International Conference on Neural Networks (1993) 1104–1109.Google Scholar
  9. 9.
    Pérez, J., Pazos, R., Frausto, J., Ramírez, S., Reyes, F.: Dynamic Allocation of Vertical Fragments in Distributed Databases Using the Threshold Accepting Algorithm. Proceedings of 10th IASTED International Conference on Parallel and Distributed Computing and Systems, Las Vegas (1998) 210–213.Google Scholar
  10. 10.
    Telley, H., Liebling, Th.M., Mocellin, A.: Reconstruction of Polycrystalline Structures: a New Application of Combinatorial optimization. Journal Computing, Vol. 38 (1987) 1–11.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joaquín Pérez 
    • 1
    • 2
  • Rodolfo Pazos 
    • 2
  • Laura Velez 
    • 3
  • Guillermo Rodríguez
    • 1
  1. 1.Instituto de Investigaciones EléctricasMexico
  2. 2.Centro Nacional de Investigación y Desarrollo TecnológicoMexico
  3. 3.Instituto Tecnológico de Cd. MaderoMadero

Personalised recommendations