Advertisement

A Note on Synchronized Automata and Road Coloring Problem

  • Karel CulikII
  • Juhani Karhumäki
  • Jarkko Kari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2295)

Abstract

We consider a problem of labeling a directed multigraph so that it becomes a synchronized finite automaton, as an ultimate goal to solve the famous Road Coloring Conjecture, cf. [1],[2].We introduce a relabeling method which can be used for a large class of automata to improve their “degree of synchronization”. This allows, for example, to formulate the conjecture in several equivalent ways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Adler, L.W. Goodwyn and B. Weiss, Equivalence of Topological Markov Shifts, Israel J. Math. 27, 49–63, (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.-P. Beal and D. Perrin, Symbolic Dynamics and Finite automata, in: G. Rozenberg and A. Salomaa (eds.) Handbook of Formal Languages Vol II, 49–63, (1997).Google Scholar
  3. 3.
    J. Černí, Poznámka k homogennym experimenton s konečnými automatmi, Mat. fyz. čas. SAV 14, 208–215, (1964).Google Scholar
  4. 4.
    J. Friedman On the road coloring problem, Math. Soc. 110, 1133–1135, (1990).zbMATHGoogle Scholar
  5. 5.
    J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, (Addison-Wesley 1979).Google Scholar
  6. 6.
    A. Kljachko, I. Rystsow and K. Spivak, Extended combinatorial problem concerning the length of the reset word in a finite automaton, Cybernetics 23, 165–170, (1987).CrossRefGoogle Scholar
  7. 7.
    J. Kari, A counter example to a conjecture concerning synchronized words in finite automata, EATCS Bull. 73, 146, (2001).zbMATHMathSciNetGoogle Scholar
  8. 8.
    D. Lind and B. Marcus, An Introduction of Symbolic Dynamics and Coding, (Cambridge Univ. Press, 1995).Google Scholar
  9. 9.
    G. L. O’ Brien, The road coloring problem, Israel J. Math. 39, 145–154, (1981).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Perrin and M.P. Schüzenberger, Synchronizing prefix codes and automata and the road coloring problem, in: P. Walters (ed.) Symbolic Dynamics and its Applications, Contemporary Mathematics 135, 295–318, (1991).Google Scholar
  11. 11.
    J.-E. Pin, Le probleme de la conjecture de Černý, These de 3e cycle, Universite de Paris VI (1978).Google Scholar
  12. 12.
    J.-E. Pin, On two combinatorial problems arising from automata theory, Annals of Discrete Mathematics 17, 535–548, (1983).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Karel CulikII
    • 1
  • Juhani Karhumäki
    • 2
  • Jarkko Kari
    • 3
  1. 1.Department of Computer ScienceUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Mathematics and Turku Centre for Computer ScienceUniversity of TurkuTurkuFinland
  3. 3.Department of Computer Science14 MLH University of IowaIowa CityUSA

Personalised recommendations