Advertisement

Non-parametric Estimation of Properties of Combinatorial Landscapes

  • Anton Eremeev
  • Colin R. Reeves
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2279)

Abstract

Earlier papers [1],[2] introduced some statistical estimation methods for measuring certain properties of landscapes induced by heuristic search methods: in particular, the number of optima. In this paper we extendthis approach to non-parametric methods which allow us to relax a critical assumption of the earlier approach. Two techniques are described—the jackknife and the bootstrap—based on statistical ideas of resampling, and the results of some empirical studies are presented and analysed.

Keywords

Local Optimum Empirical Distribution Neighbourhood Search Bootstrap Estimate Basin Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reeves, C.R.: Estimating the number of optima in a landscape, Part I: Statistical principles. (in review) (2001).Google Scholar
  2. 2.
    Reeves, C.R.: Estimating the number of optima in a landscape, Part II: Experimental investigations. (in review) (2001).Google Scholar
  3. 3.
    Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968).zbMATHGoogle Scholar
  4. 4.
    Beaumont, G.P.: Intermediate Mathematical Statistics, Chapman & Hall, London (1980).zbMATHGoogle Scholar
  5. 5.
    Kallel, L., Garnier, J.: How to detect all maxima of a function. In Kallel, L., Naudts, B., Rogers, A. (eds.): Theoretical Aspects of Evolutionary Computing. Springer-Verlag, Berlin (2001) 343–370.Google Scholar
  6. 6.
    Burnham, K.P., Overton, W.S.: Estimation of the size of a closedp opulation when capture probabilities vary between animals. Biometrika 65 (1978) 625–633.zbMATHCrossRefGoogle Scholar
  7. 7.
    Efron, B.: Bootstrap methods: another look at the jackknife. Annals of Statistics 7 (1979) 1–26.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, London (1993).zbMATHGoogle Scholar
  9. 9.
    Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. OxfordUniv ersity Press, Oxford (1993).Google Scholar
  10. 10.
    Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operational Research 86 (1999) 473–490.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters 16 (1994) 101–113.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Reeves, C.R.: Experiments with tuneable fitness landscapes. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H-P. (eds.) Parallel Problem-Solving from Nature-PPSN VI. Springer-Verlag, Berlin Heidelberg New York (2000) 139–148.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Anton Eremeev
    • 1
  • Colin R. Reeves
    • 2
  1. 1.Discrete Optimization LaboratorySobolev Institute of Mathematics (Omsk Branch)OmskRussia
  2. 2.School of Mathematical andInformation SciencesCoventry UniversityCoventryUK

Personalised recommendations