Advertisement

SavingsAnts for the Vehicle Routing Problem

  • Karl Doerner
  • Manfred Gronalt
  • Richard F. Hartl
  • Marc Reimann
  • Christine Strauss
  • Michael Stummer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2279)

Abstract

In this paper we propose a hybrid approach for solving vehicle routing problems. The main idea is to combine an Ant System (AS) with a problem specific constructive heuristic, namely the well known Savings algorithm. This difiers from previous approaches, where the subordinate heuristic was the Nearest Neighbor algorithm initially proposed for the TSP. We compare our approach with some other classic, powerful meta-heuristics and showthat our results are competitive.

Keywords

Travelling Salesman Problem Neighborhood Size Vehicle Route Problem Vehicle Route Pheromone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP Completeness. W. H. Freeman & Co., NewY ork (1979)zbMATHGoogle Scholar
  2. 2.
    Colorni, A., Dorigo, M. and Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Varela, F. and Bourgine, P. (Eds.): Proc. Europ. Conf. Artificial Life. Elsevier, Amsterdam (1991)Google Scholar
  3. 3.
    Costa, D. and Hertz, A.: Ants can colour graphs. Journal of the Operational Research Society 48(3) (1997) 295–305zbMATHCrossRefGoogle Scholar
  4. 4.
    Stützle, T. and Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem. In: Corne, D., Dorigo, M. and Glover, F. (Eds.): NewIdeas in Optimization. Mc Graw-Hill, London (1999)Google Scholar
  5. 5.
    Dorigo, M. and Gambardella, L. M.: Ant Colony System: A cooperative learning approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1) (1997) 53–66CrossRefGoogle Scholar
  6. 6.
    Bullnheimer, B., Hartl, R. F. and Strauss, Ch.: A newrank based version of the ant system: a computational study. Central European Journal of Operations Research 7(1) (1999) 25–38zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bullnheimer, B., Hartl, R. F. and Strauss, Ch.: Applying the ant system to the vehicle routing problem. In: Voss, S., Martello, S., Osman, I. H. and Roucairol, C. (Eds.): Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer, Boston (1999)Google Scholar
  8. 8.
    Bullnheimer, B., Hartl, R. F. and Strauss, Ch.: An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research 89 (1999) 319–328zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gambardella, L. M., Taillard, E. and Agazzi, G.: MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. In: Corne, D., Dorigo, M. and Glover, F. (Eds.): NewIdeas in Optimization. McGraw-Hill, London (1999)Google Scholar
  10. 10.
    Gutjahr, W. J.: A graph-based Ant System and its convergence. Future Generation Computing Systems. 16 (2000) 873–888Google Scholar
  11. 11.
    Clarke, G. and Wright, J. W.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12 (1964) 568–581Google Scholar
  12. 12.
    Croes, G. A.: A method for solving Traveling Salesman Problems. Operations Research 6 (1958) 791–801MathSciNetGoogle Scholar
  13. 13.
    Christofides, N., Mingozzi, A. and Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P. and Sandi, C. (Eds.): Combinatorial Optimization. Wiley, Chicester (1979)Google Scholar
  14. 14.
    Taillard, E. D.: Parallel iterative search methods for vehicle routing problems. Networks 23 (1993) 661–673zbMATHCrossRefGoogle Scholar
  15. 15.
    Rochat, Y. and Taillard, E. D.: Probabilistic Diversification and Intensification in Local Search for Vehicle Routing. Journal of Heuristics 1 (1995) 147–167zbMATHCrossRefGoogle Scholar
  16. 16.
    Rego, C. and Roucairol, C.: A parallel tabu search algorithm using ejection chains for the vehicle routing problem. In: Osman, I. H. and Kelly, J. (Eds.): Meta-Heuristics:Theory and Applications. Kluwer, Boston (1996)Google Scholar
  17. 17.
    Gendreau, M., Hertz, A. and Laporte, G.:A tabu search heuristic for the vehicle routing problem. Management Science 40 (1994) 1276–1290zbMATHCrossRefGoogle Scholar
  18. 18.
    Osman, I. H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41 (1993) 421–451zbMATHCrossRefGoogle Scholar
  19. 19.
    Doerner, K. F., Hartl, R.F., and Reimann, M.: Are CompetANTS competent for problem solving-the case of a transportation problem. POM Working Paper 01/2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Karl Doerner
    • 1
  • Manfred Gronalt
    • 1
  • Richard F. Hartl
    • 1
  • Marc Reimann
    • 1
  • Christine Strauss
    • 1
  • Michael Stummer
    • 1
  1. 1.Institute of Management ScienceUniversity of ViennaViennaAustria

Personalised recommendations