Advertisement

The ForSpec Temporal Logic: A New Temporal Property-Specification Language

  • Roy Armoni
  • Limor Fix
  • Alon Flaisher
  • Rob Gerth
  • Boris Ginsburg
  • Tomer Kanza
  • Avner Landver
  • Sela Mador-Haim
  • Eli Singerman
  • Andreas Tiemeyer
  • MosheY. Vardi
  • Yael Zbar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2280)

Abstract

In this paper we describe the ForSpec Temporal Logic (FTL), the new temporal property-specification logic of ForSpec, Intel’s new formal specification language. The key features of FTL are as follows: it is a linear temporal logic, based on Pnueli’s LTL, it is based on a rich set of logical and arithmetical operations on bit vectors to describe state properties, it enables the user to define temporal connectives over time windows, it enables the user to define regular events, which are regular sequences of Boolean events, and then relate such events via special connectives, it enables the user to express properties about the past, and it includes constructs that enable the user to model multiple clock and reset signals, which is useful in the verification of hardware design.

Keywords

Model Check Temporal Logic Linear Temporal Logic Boolean Expression Linear Time Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AH92]
    R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In J.W.de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice, Lecture Notes in Computer Science 600, pages 74–106. Springer-Verlag, 1992.CrossRefGoogle Scholar
  2. [BB87]
    B. Banieqbal and H. Barringer. Temporal logic with fixed points. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture Notes in Computer Science, pages 62–74. Springer-Verlag, 1987.Google Scholar
  3. [BBDE+01]
    I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal logic sugar. In Proc. Conf. on Computer-Aided Verification (CAV’00), volume 2102 of Lecture Notes in Computer Science, pages 363–367. Springer-Verlag, 2001.Google Scholar
  4. [BBL98]
    I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In Computer Aided Verification, Proc. 10th International Conference, volume 1427 of Lecture Notes in Computer Science, pages 184–194. Springer-Verlag, 1998.Google Scholar
  5. [CCGR00]
    A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model checker. It’l J. on Software Tools for Technology Transfer, 2(4):410–425, 2000.zbMATHCrossRefGoogle Scholar
  6. [CLM98]
    R. Cleaveland, G. Luttgen, and M. Mendler. An algebraic theory of multiple clocks. In Proc. 8th Int’l Conf. on Concurrency Theory (CONCUR’97), volume 1243 of Lecture Notes in Computer Science, pages 166–180. Springer-Verlag, 1998.Google Scholar
  7. [Eme90]
    E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 16, pages 997–1072. Elsevier, MIT press, 1990.Google Scholar
  8. [ET97]
    E.A. Emerson and R.J. Trefler. Generalized quantitative temporal reasoning: An automata theoretic. In Proc. Theory and Practice of Software Development (TAPSOFT), volume 1214 of Lecture Notes in Computer Science, pages 189–200. Springer-Verlag, 1997.Google Scholar
  9. [Fin01]
    B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs. In Tools and algorithms for the construction and analysis of systems, Lecture Notes in Computer Science. Springer-Verlag, 2001.Google Scholar
  10. [FL79]
    M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and Systems Sciences, 18:194–211, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [HT99]
    J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals of Pure and Applied Logic, 96(1–3):187–207, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Koz83]
    D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 27:333–354, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [KPV01]
    O. Kupferman, N. Piterman, and M.Y. Vardi. Extended temporal logic revisited. In Proc. 12th International Conference on Concurrency Theory, volume 2154 of Lecture Notes in Computer Science, pages 519–535, August 2001.Google Scholar
  14. [Kur97]
    R.P. Kurshan. Formal verification in a commercial setting. In Proc. Conf. on Design Automation (DAC’97), volume 34, pages 258–262, 1997.Google Scholar
  15. [Kur98]
    R.P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc., 1998.Google Scholar
  16. [KV01]
    O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal methods in System Design, 19(3):291–314, November 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [LO99]
    C. Liu and M.A. Orgun. Verification of reactive systems using temporal logics with clocks. Theoretical Computer Science, 220:377–408, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [LPZ85]
    O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages 196–218, Brooklyn, June 1985. Springer-Verlag.Google Scholar
  19. [Mor99]
    M.J. Morley. Semantics of temporal e. In T. F. Melham and F.G. Moller, editors, Banff’99 Higher OrderWorkshop (Formal Methods in Computation). University of Glasgow, Department of Computing Science Technical Report, 1999.Google Scholar
  20. [Pnu85]
    A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages 123–144. Springer-Verlag, 1985.Google Scholar
  21. [SBF+97]
    T. Schlipf, T. Buechner, R. Fritz, M. Helms, and J. Koehl. Formal verification made easy. IBM Journal of Research and Development, 41(4:5), 1997.Google Scholar
  22. [SVW87]
    A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Var96]
    M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.Google Scholar
  24. [Var01]
    M.Y. Vardi. Branching vs. linear time: Final showdown. In Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 2031 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag, 2001.Google Scholar
  25. [VW94]
    M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1–37, November 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [Wol83]
    P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99, 1983.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Roy Armoni
    • 1
  • Limor Fix
    • 1
  • Alon Flaisher
    • 1
  • Rob Gerth
    • 2
  • Boris Ginsburg
  • Tomer Kanza
    • 1
  • Avner Landver
    • 1
  • Sela Mador-Haim
    • 1
  • Eli Singerman
    • 1
  • Andreas Tiemeyer
    • 1
  • MosheY. Vardi
    • 3
  • Yael Zbar
    • 1
  1. 1.Intel Strategic CAD LabsUSA
  2. 2.Intel Israel Development CenterIsrael
  3. 3.Rice UniversityUSA

Personalised recommendations