Improved Tree Decomposition Based Algorithms for Domination-like Problems

  • Jochen Alber
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2286)


We present an improved dynamic programming strategy for dominating set and related problems on graphs that are given together with a tree decomposition of width k. We obtain an O(4kn) algorithm for dominating set, where n is the number of nodes of the tree decomposition. This result improves the previously best known algorithm of Telle and Proskurowski running in time O(9kn). The key to our result is an argument on a certain “monotonicity” in the table updating process during dynamic programming.

Moreover, various other domination-like problems as discussed by Telle and Proskurowski are treated with our technique. We gain improvements on the base of the exponential term in the running time ranging between 55% and 68% in most of these cases. These results mean significant breakthroughs concerning practical implementations.


algorithms and data structures combinatorics and graph theory computational complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter algorithms for planar dominating set and related problems. In Proceedings 7th SWAT 2000, Springer-Verlag LNCS 1851, pp. 97–110, 2000.zbMATHGoogle Scholar
  2. 2.
    J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-up for planar graph problems. In Proceedings 28th ICALP 2001, Springer-Verlag LNCS 2076, pp. 261–272, 2001.zbMATHGoogle Scholar
  3. 3.
    J. Alber, F. Dorn, and R. Niedermeier. Experiments on optimally solving parameterized problems on planar graphs. Manuscript, December 2001.Google Scholar
  4. 4.
    B. Aspvall, A. Proskurowski, and J. A. Telle. Memory requirements for table computations in partial k-tree algorithms. Algorithmica 27: 382–394, 2000.MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces in a planar graph. SIAM J. Comput. 17:53–76, 1988.MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25:1305–1317, 1996.MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings 22nd MFCS’97, Springer-Verlag LNCS 1295, pp. 19–36, 1997.zbMATHGoogle Scholar
  8. 8.
    A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.Google Scholar
  9. 9.
    J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further improvements. In Proceedings 25th WG, Springer-Verlag LNCS 1665, pp. 313–324, 1999.zbMATHGoogle Scholar
  10. 10.
    D. G. Corneil and J. M. Keil. A dynamic programming approach to the dominating set problem on k-trees. SIAM J. Alg. Disc. Meth., 8: 535–543, 1987.MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer-Verlag, 1999.Google Scholar
  12. 12.
    T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Monographs and textbooks in Pure and Applied Mathematics Vol. 208, Marcel Dekker, 1998.Google Scholar
  13. 13.
    T. W. Haynes, S. T. Hedetniemi, and P. J. Slater eds.. Domination in Graphs; Advanced Topics. Monographs and textbooks in Pure and Applied Mathematics Vol. 209, Marcel Dekker, 1998.Google Scholar
  14. 14.
    T. Kloks. Treewidth. Computations and Approximations. Springer-Verlag LNCS 842, 1994.zbMATHGoogle Scholar
  15. 15.
    A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. Hoesel. Treewidth: Computational Experiments. Electronic Notes in Discrete Mathematics 8, Elsevier Science Publishers, 2001.Google Scholar
  16. 16.
    D. Kratsch. Algorithms. Chapter 8 in [13].Google Scholar
  17. 17.
    K. Mehlhorn and S. Näher. LEDA: A Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge, England, 1999.zbMATHGoogle Scholar
  18. 18.
    R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further improved. In Proc. 16th STACS’99, Springer-Verlag LNCS 1563, pp. 561–570, 1999.zbMATHGoogle Scholar
  19. 19.
    J. A. Telle. Complexity of domination-type problems in graphs. Nordic J. Comput. 1:157–171, 1994.MathSciNetGoogle Scholar
  20. 20.
    J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an application to domination-like problems. In Proceedings 3rd WADS’93, Springer-Verlag LNCS 709, pp. 610–621, 1993.Google Scholar
  21. 21.
    J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discr. Math. 10(4):529–550, 1997.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jochen Alber
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations