Advertisement

Massive Quasi-Clique Detection

  • James Abello
  • Mauricio G. C. Resende
  • Sandra Sudarsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2286)

Abstract

We describe techniques that are useful for the detection of dense subgraphs (quasi-cliques) in massive sparse graphs whose vertex set, but not the edge set, fits in RAM. The algorithms rely on efficient semi-external memory algorithms used to preprocess the input and on greedy randomized adaptive search procedures (GRASP) to extract the dense subgraphs. A software platform was put together allowing graphs with hundreds of millions of nodes to be processed. Computational results illustrate the effectiveness of the proposed methods.

Keywords

Local Search Maximum Clique Greedy Randomized Adaptive Search Procedure Edge Density Dense Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Abello, P. Pardalos and M. Resende, editors. Handbook of Massive Data Sets, Kluwer Academic Publishers, 2002.Google Scholar
  2. 2.
    J. Abello, A. Bushbaum, and J. Westbrook. A functional approach to external memory algorithms. In European Symposium on Algorithms, volume 1461 of Lecture Notes in Computer Science, pages 332–343. Springer-Verlag, 1998.Google Scholar
  3. 3.
    J. Abello and J. Vitter, editors. External Memory Algorithms, volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1999.Google Scholar
  4. 4.
    S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. Proc. 33rd IEEE Symp. on Foundations of Computer Science, pages 14–23, 1992.Google Scholar
  5. 5.
    S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J. of the ACM, volume 45, pages 70–122, 1998.MathSciNetCrossRefGoogle Scholar
  6. 6.
    U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating the maximum clique is almost NP-complete. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 2–12, 1991.Google Scholar
  7. 7.
    T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally dificults et covering problem. Operations Research Letters, volume 8, pages 67–71, 1989.MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Glover. Tabu search. PartI. ORSA J. Comput., volume 1, pages 190–206, 1989.CrossRefGoogle Scholar
  9. 9.
    J. Håstad, Clique is hard to approximate within n 1-∈. Acta Mathematica, volume 182, pages 105–142, 1999.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975.Google Scholar
  11. 11.
    S. Kirkpatrick, C. D. Gellat Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, volume 220, 671–680, 1983.MathSciNetCrossRefGoogle Scholar
  12. 12.
    L.S. Pitsoulis and M.G.C. Resende. Greedy randomized adaptive search procedures. In P. M. Pardalos and M. G. C. Resende, editors, Handbook of Applied Optimization. Oxford University Press, pages 168–182, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • James Abello
    • 1
  • Mauricio G. C. Resende
    • 1
  • Sandra Sudarsky
    • 2
  1. 1.AT&T Labs ResearchFlorham ParkUSA
  2. 2.Siemens Corporate Research, IncPrincetonUSA

Personalised recommendations