Ridgelet Transform Based on Reveillès Discrete Lines

  • Philippe Carré
  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)


In this paper we present a new discrete implementation of ridgelet transforms based on Reveillès discrete 2D lines. Ridgelet transforms are particular invertible wavelet transforms. Our approach uses the arithmetical thickness parameter of Reveillès lines to adapt the Ridgelet transform to specific applications. We illustrate this with a denoising and a compression algorithm. The broader aim of this paper is to show how results of discrete analytical geometry can be sucessfully used in image analysis.


Fast Fourier Transform Synthetic Aperture Radar Inverse Fourier Transform Wavelet Decomposition Noisy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reveillès, J.P.: Géométrie discrète, calcul en nombresen tierset algorithmique. Habilitation, Université Louis Pasteur de Strasbourg (1991)Google Scholar
  2. 2.
    Candès, E.: Ridgelets: Theory and Applications. PhD thesis, Stanford (1998)Google Scholar
  3. 3.
    Do, M., Vetterli, M.: Discrete ridgelet transforms for image representation. Submitted to IEEE Trans. on Image Processing (2001)Google Scholar
  4. 4.
    Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. Technical report, Department of Statistics, Stanford (2000)Google Scholar
  5. 5.
    Normand, N., Guedon, P.: Transformee mojette: une transformee redondante pour l’image. Compte rendu de l’Académie des Sciences (1998)Google Scholar
  6. 6.
    Carré, P., Leman, H., Marque, C., Fernandez, C.: Denoising the EHG signal with an undecimated wavelet transform. IEEE Trans. on Biomedical Engineering 45 (1998) 1104–1113CrossRefGoogle Scholar
  7. 7.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet transform. IEEE Trans. on PAMI 11 (1989) 674–693zbMATHGoogle Scholar
  8. 8.
    Burt, P., Adelson, E.: The laplacien pyramid as a compact image code. IEEE Trans. Comm. 31 (1983) 482–550CrossRefGoogle Scholar
  9. 9.
    Andrès, E.: Modélisation analytique discrète d’objetsg éométriques. Habilitation, Université de Poitiers (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Philippe Carré
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratoire IRCOM-SICChasseneuil-Futuroscope CédexFRANCE

Personalised recommendations