Defining Discrete Objects for Polygonalization: The Standard Model

  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

A new description model, called the standard model, for discrete linear objects in dimension n is proposed. Standard objects are tunnel-free and (n-1)-connected. The discrete objects are defined analytically as union of intersections of half-spaces. The standard 3D polygons are well suited for polygonalization. This is the main reason why this model has been developed.

Keywords

Discrete Point Standard Object Linear Object Discrete Object Standard Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Andres, C. Sibata and R. Acharya, Supercover 3D Polygon, in: Proc. 6 th Int. Workshop on Discrete Geometry for Computer Imagery, Lyon (France), Lecture Notes in Computer Science, vol. 1176 (Springer, Berlin-Heidelberg, 1996) 237–242.Google Scholar
  2. 2.
    E. Andres, R. Acharya and C. Sibata, Discrete Analytical Hyperplanes, Graphical Models and Image Processing 59-5 (1997) 302–309.CrossRefGoogle Scholar
  3. 3.
    E. Andres, Ph. Nehlig and J. Françon, Tunnel-free supercover 3D polygons and polyhedra, in: Proc. Eurographics’ 97, Budapest (Hungary), Computer Graphics Forum 16-3 (1997) C3–C13.Google Scholar
  4. 4.
    E. Andres, Ph. Nehlig and J. Françon, Supercover of Straight Lines, Planes and Triangles, in: Proc. 7 th Int. Workshop on Discrete Geometry for Computer Imagery, Montpellier (France), Lecture Notes in Computer Science, vol. 1347 (Springer, Berlin-Heidelberg, 1997) pp. 243–253.Google Scholar
  5. 5.
    E. Andres, Modélisation analytique discrète d’objets géométriques, Habilitation (in french), Laboratoire IRCOM-SIC, University of Poitiers (France), 8 Dec. 2000.Google Scholar
  6. 6.
    V.E. Brimkov, E. Andres, R.P. Barneva, Object discretizations in high dimensions and membership recognition, Proc. 9 th Int. Workshop on Discrete Geometry for Computer Imagery, Uppsala (Sweden), Lecture Notes in Computer Science, vol. 1953 (Springer, Berlin-Heidelberg, 2000) pp. 210–221..Google Scholar
  7. 7.
    V.E. Brimkov, E. Andres, R.P. Barneva, Object discretizations in high dimensions, accepted for publication in Pattern Recognition Letters.Google Scholar
  8. 8.
    D. Cohen and A. Kaufman, Fundamentals of Surface Voxelization, Graphical Models and Image Processing 57-6 (1995).Google Scholar
  9. 9.
    I. Debled-Renesson, J-P. Reveillès, A linear algorithm for digital plane recognition, 4th int. workshop in discrete geometry for computer imagery, Grenoble (France), sept. 1994.Google Scholar
  10. 10.
    J. Françon, Discrete Combinatorial Surfaces, Graphical Models and Image Processing, vol. 57, Janv. 1995.Google Scholar
  11. 11.
    J. Françon, J-M. Schramm, M. Tajine, Recognizing arithmetic straight lines and plane, 6th int. workshop in discrete geometry for computer imagery, Lyon (France), LNCS n°1176, nov. 1996, pp. 141–150.Google Scholar
  12. 12.
    J. Françon, L. Papier, Polyhedrization of the boundary of a voxel object, in: Proc. 8 th Int. Workshop on Discrete Geometry for Computer Imagery, Marne-la-Vallée (France), Lecture Notes in Computer Science, vol. 1568 (Springer, Berlin-Heidelberg, 1999) 425–434.Google Scholar
  13. 13.
    Y. Gérard, Local configurations of digital hyperplanes, 8th int. Workshop on discrete geometry for computer imagery, Marne-la-Vallée (France), LNCS n°1568, mars 1999, pp. 365–374.Google Scholar
  14. 14.
    A. Kaufman, An algorithm for 3D scan conversion of polygons, in: Proc. of Eurographics’ 87, Amsterdam, (1987).Google Scholar
  15. 15.
    V. Kovalesky, Digital geometry based on the topology of abstract cell complexes, 3rd Discrete Geometry Conference in Imagery, Strasbourg (France), 1993, pp. 259–284.Google Scholar
  16. 16.
    W. Lorensen, H. Cline, Marching Cubes: a high resolution 3d surface construction algorithm. SIGGRAPH’87, Anaheim (USA). Computer Graphics J., vol. 21, n°4, Jul. 1987, pp. 163–169.CrossRefGoogle Scholar
  17. 17.
    J-P. Réveilles, Géométrie Discrète, calculs en nombres entiers et algorithmique, State Thesis (in french), Département d’Informatique, Université Louis Pasteur, Strasbourg (France), 1991.Google Scholar
  18. 18.
    M. Tajine, D. Wagner, C. Ronse, Hausdorff discretizations and its comparison to other discretization schemes, in: Proc. 8 th Int. Workshop on Discrete Geometry for Computer Imagery, Marne-la-Vallée (France), Lecture Notes in Computer Science, vol. 1568 (Springer, Berlin-Heidelberg, 1999) 399–410.Google Scholar
  19. 19.
    J. Vittone, J-M. Chassery, (nm)-cubes and Farey nets for naïve planes understanding, 8th int. workshop in discrete geometry for computer imagery, Marne-la-Vallée (France), LNCS n°1568, mars 1999, pp. 76–87.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Eric Andres
    • 1
  1. 1.Laboratoire IRCOM-SICUniversité de PoitiersFuturoscope CedexFrance

Personalised recommendations