Discretization in 2D and 3D Orders

  • Michel Couprie
  • Gilles Bertrand
  • Yukiko Kenmochi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

Among the different discretization schemes that have been proposed and studiedin the literature, the supercover is a very natural one, and furthermore presents some interesting properties. On the other hand, an important structural property does not hold for the supercover in the classical framework: the supercover of a straight line (resp. a plane) is not a discrete curve (resp. surface) in general.

Keywords

discretization topology orders supercover discrete surfaces 

References

  1. 1.
    E. Andrès, Modélisation analytique discrète d’objets géométriques, Thèse de HDR, Université de Poitiers (France), 2000.Google Scholar
  2. 2.
    E. Andrès, C. Sibata, R. Acharya, “Supercover 3D polygon”, Conf. on Discrete Geom. for Comp. Imag., Vol. 1176, Lect. Notes in Comp. Science, Springer Verlag, pp. 237–242, 1996.Google Scholar
  3. 3.
    P.S. Alexandro., “Diskrete Räume”, Mat. Sbornik, 2, pp. 501–518, 1937.Google Scholar
  4. 4.
    P.S. Alexandroff, H. Hopf, Topologie, Springer Verlag, 1937.Google Scholar
  5. 5.
    G. Bertrand, “New notions for discrete topology”, 8th Conf. on Discrete Geom. for Comp. Imag., Vol. 1568, Lect. Notes in Comp. Science, Springer Verlag, pp. 216–226, 1999.Google Scholar
  6. 6.
    G. Bertrand, M. Couprie, “A model for digital topology”, 8th Conf. on Discrete Geom. for Comp. Imag., Vol. 1568, Lect. Notes in Comp. Science, Springer Verlag, pp. 229–241, 1999.Google Scholar
  7. 7.
    J. Bresenham, “Algorithm for computer control of digital plotter”, IBM System Journal, Vol. 4, pp. 25–30, 1965.CrossRefGoogle Scholar
  8. 8.
    V.E. Brimkov, E. Andrès, R.P. Barneva, “Object discretization in higher dimensions”, 9th Conf. on Discrete Geom. for Comp. Imag., Vol. 1953, Lect. Notes in Comp. Science, Springer Verlag, pp. 210–221, 2000.Google Scholar
  9. 9.
    J.M. Chassery, A. Montanvert, Géométrie discrète en imagerie, Hermès, Paris, France, 1991.Google Scholar
  10. 10.
    D. Cohen-Or, A. Kaufman, “Fundamentals of surface voxelization”, Graphical models and image processing, 57(6), pp. 453–461, 1995.CrossRefGoogle Scholar
  11. 11.
    A.V. Evako, R. Kopperman, Y.V. Mukhin, “Dimensional Properties of Graphs and Digital Spaces”, Jour. of Math. Imaging and Vision, 6, pp. 109–119, 1996.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    E.D. Khalimsky, “On topologies of generalized segments”, Soviet Math. Doklady, 10, pp. 1508–1511, 1969.Google Scholar
  13. 13.
    E.D. Khalimsky, R. Kopperman, P. R. Meyer, “Computer Graphics and Connected Topologies on Finite Ordered Sets”, Topology and its Applications, 36, pp. 1–17, 1990.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Klette, “m-dimensional cellular spaces”, internal report, University of Maryland, CAR-TR-6, MCS-82-18408, CS-TR-1281, 1983.Google Scholar
  15. 15.
    R. Klette, “The m-dimensional grid point space”, Computer vision, graphics, and image processing, 30, pp. 1–12, 1985.CrossRefGoogle Scholar
  16. 16.
    T.Y. Kong and A. Rosenfeld, “Digital topology: introduction and survey”, Comp. Vision, Graphics and Image Proc., 48, pp. 357–393, 1989.Google Scholar
  17. 17.
    J. Koplowitz, “On the performance of chain codes for quantization of line drawings”, IEEE Trans. on PAMI, 3, pp. 180–185, 1981.MATHGoogle Scholar
  18. 18.
    V.A. Kovalevsky, “Topological foundations of shape analysis”, in Shape in Pictures, NATO ASI Series, Series F, Vol. 126, pp. 21–36, 1994.Google Scholar
  19. 19.
    L.J. Latecki, Discrete representation of spatial objects in computer vision, Kluwer Academic Publishers, 1998.Google Scholar
  20. 20.
    J-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’état, Université Louis Pasteur, Strasbourg (France), 1991.MATHGoogle Scholar
  21. 21.
    C. Ronse, M. Tajine, “Hausdorff discretization of algebraic sets and diophantine sets”, 9th Conf. on Discrete Geom. for Comp. Imag., Vol. 1953, Lect. Notes in Comp. Science, Springer Verlag, pp. 216–226, 2000.Google Scholar
  22. 22.
    C. Ronse, M. Tajine, “Hausdorff discretization for cellular distances, and its relation to cover and supercover discretizations”, Journal of Visual Communication and Image Representation, Vol. 12, no. 2, pp. 169–200, 2001.CrossRefGoogle Scholar
  23. 23.
    A. Rosenfeld, A.C. Kak: Digital picture processing, Academic Press, 1982.Google Scholar
  24. 24.
    J. Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982.Google Scholar
  25. 25.
    J. Webster, “Cell complexes and digital convexity”, Digital and image geometry, Vol. 2243, Lect. Notes in Comp. Science, Springer Verlag, pp. 268–278, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michel Couprie
    • 1
  • Gilles Bertrand
    • 1
  • Yukiko Kenmochi
    • 1
  1. 1.Laboratoire A2SIESIEE Cité DescartesNoisy-Le-Grand CedexFrance

Personalised recommendations