Surface Area Estimation of Digitized 3D Objects Using Local Computations

  • Joakim Lindblad
  • Ingela Nyström
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)

Abstract

We describe surface area measurements based on local estimates of isosurfaces originating from a marching cubes representation. We show how improved precision and accuracy are obtained by optimizing the area contribution for one of the cases in this representation. The computations are performed on large sets (approximately 200,000 3D objects) of computer generated spheres, cubes, and cylinders. The synthetic objects are generated over a continuous range of sizes with randomized alignment in the digitization grid. Sphericity, a scale invariant measure of compactness, allows us, in combination with the improved surface area estimate, to distinguish among the test sets.

Keywords

shape analysis marching cubes isoperimetric inequality accuracy rotation invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34:344–371, 1986.CrossRefGoogle Scholar
  2. 2.
    S.-s. Chern. Studies in Global Geometry and Analysis, volume 4 of Studies in Mathematics, pages 25–29. The Mathematical Association of America, Washington, DC, 1967.Google Scholar
  3. 3.
    L. Dorst and A. W. M. Smeulders. Length estimators for digitized contours. Computer Vision, Graphics and Image Processing, 40:311–333, 1987.CrossRefGoogle Scholar
  4. 4.
    M. J. Dürst. Letters: Additional reference to “Marching Cubes”. In Proceedings of ACM SIGGRAPH on Computer Graphics, volume 22(2), pages 72–73, Apr. 1988.Google Scholar
  5. 5.
    H. Freeman. Boundary encoding and processing. In B. S. Lipkin and A. Rosenfeld, editors, Picture Processing and Psychopictorics, pages 241–266. Academic Press, 1970.Google Scholar
  6. 6.
    F. C. A. Groen and P. W. Verbeek. Freeman code probabilities of object boundary quantized contours. Computer Graphics and Image Processing, 7:391–402, 1978.CrossRefGoogle Scholar
  7. 7.
    Y. Kenmochi and R. Klette. Surface area estimation for digitized regular solids. In L. J. Latecki, R. A. Melter, D. M. Mount, and A. Y. Wu, editors, Vision Geometry IX, pages 100–111. Proc. SPIE 4117, 2000.Google Scholar
  8. 8.
    Y. Kenmochi, K. Kotani, and A. Imiya. Marching cubes method with connectivity. In Proc. of IEEE Int. Conference on Image Processing (ICIP’99), pages 361–365, 1999.Google Scholar
  9. 9.
    R. Klette and H. J. Sun. Digital planar segment based polyhedrization for surface area estimation. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Visual Form 2001, volume 2059 of Lecture Notes in Computer Science, pages 356–366. Springer-Verlag, 2001.CrossRefGoogle Scholar
  10. 10.
    J.-O. Lachaud and A. Montanvert. Digital surfaces as a basis for building isosurfaces. In Proc. of 5th IEEE Int. Conference on Image Processing (ICIP’98), volume 2, pages 977–981, Chicago, IL, 1998.Google Scholar
  11. 11.
    J.-O. Lachaud and A. Montanvert. Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graphical Models, 62:129–164, 2000.CrossRefGoogle Scholar
  12. 12.
    J. Lindblad. Perimeter and area estimates for digitized objects. In Proceedings of SSAB (Swedish Society for Automated Image Analysis) Symposium on Image Analysis, pages 113–117, Norrköping, Sweden, Mar. 2001. Available from the author.Google Scholar
  13. 13.
    W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3D surface construction algorithm. In Proceedings of the 14th ACM SIGGRAPH on Computer Graphics, volume 21(4), pages 163–169, July 1987.Google Scholar
  14. 14.
    I. Nyström, J. K. Udupa, G. J. Grevera, and B. E. Hirsch. Area of and volume enclosed by digital and triangulated surfaces. In S. K. Mun, editor, Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display. Proc. SPIE 4681. Accepted for publication.Google Scholar
  15. 15.
    J. K. Udupa. Multidimensional digital boundaries. Graphical Models and Image Processing, 56(4):311–323, July 1994.CrossRefGoogle Scholar
  16. 16.
    A. Van Gelder and J. Wilhelms. Topological considerations in isosurface generation. ACM Transactions on Graphics, 13(4):337–375, 1994.CrossRefGoogle Scholar
  17. 17.
    A. M. Vossepoel and A. W. M. Smeulders. Vector code probability and metrication error in the representation of straight lines of finite length. Computer Graphics and Image Processing, 20:347–364, 1982.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joakim Lindblad
    • 1
  • Ingela Nyström
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSWEDEN

Personalised recommendations