Advertisement

Some Experimental Results with Tree Adjunct Grammar Guided Genetic Programming

  • Nguyen Xuan Hoai
  • R. I. McKay
  • D. Essam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2278)

Abstract

Tree-adjunct grammar guided genetic programming (TAG3P) [5] is a grammar guided genetic programming system that uses context-free grammars along with tree-adjunct grammars as means to set language bias for the genetic programming system. In this paper, we show the experimental results of TAG3P on two problems: symbolic regression and trigonometric identity discovery. The results show that TAG3P works well on those problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann Pub, USA (1998).zbMATHGoogle Scholar
  2. 2.
    Gruau, F.: On Using Syntactic Constraints with Genetic Programming. In: Angeline, P. J., Kinnear, K.E. Jr. (eds): Advances in Genetic Programming. The MIT Press, USA (1996) 377–394.Google Scholar
  3. 3.
    Hoai, N.X.: Solving The Symbolic Regression Problem with Tree-Adjunct Grammar Guided Genetic Programming: The Preliminary Results. (To appear in the Proceedings of The 5th Autraliasia-Japan Co-Joint Workshop on Evolutionary Computation, Nov 2001, Ontago New Zealand).Google Scholar
  4. 4.
    Hoai, N.X.: Solving Trigonometric Identities with Tree Adjunct Grammar Guided Genetic Programming. (To appear in the Proceedings of The First International Workshop on Hybrid Intelligent Systems (HIS’01), Dec 2001, Adelaide, Australia).Google Scholar
  5. 5.
    Hoai N.X., McKay, R.I.: A Framework for Tree Adjunct Grammar Guided Genetic Programming. In: Abbass, H.A., Barlow. M. (eds): Proceedings of the Post-graduate ADFA Conference on Computer Science (PACCS’01) (2001) 93–99.Google Scholar
  6. 6.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and System Sciences, 10(1) (1975) 136–163.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Joshi, A.K., Schabes, Y.: Tree Adjoining Grammars. In: Rozenberg G, Saloma A (eds) Handbook of Formal Languages. Springer-Verlag, NY, USA, vol 3 (1997) 69–123.Google Scholar
  8. 8.
    Koza, J.: Genetic Programming. The MIT Press, USA (1992).zbMATHGoogle Scholar
  9. 9.
    O’Neill, M.: Automatic Programming with Grammatical Evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Workshop Program, July 13–17, Orlando, Florida USA (1999).Google Scholar
  10. 10.
    O’Neil, M., Collin, J.J.: Grammar Evolution: Solving Trigonometric Identities. In: Proceedings of Mendel’ 98, (1998) 111–119.Google Scholar
  11. 11.
    O’Neill, M., Ryan, C.: Grammatical Evolution: A Steady State Approach. In: Proceedings of the Second International Workshop on Frontiers in Evolutionary Algorithms 1998, (1998) 419–423.Google Scholar
  12. 12.
    O’Neil, M., Ryan, C.: Under the Hood of Grammatical Evolution. In: Banzhaf, W.,.Daida, J., Eiben, A.E., Garzon, M.H., Hovana, V., Jakiela, M., Smith, R.E. (eds): GECCO-99, Morgan Kaufmann Pub, USA (1999).Google Scholar
  13. 13.
    O’Neill, M., Ryan, C.: Genetic Code Degeneracy: Implication for Grammatical Evolution and Beyond. In: Proceedings of the European Conference on Artificial Life (1999).Google Scholar
  14. 14.
    Ratle, A., Sebag, M.: Genetic Programming and Domain Knowledge: Beyond the Limitations of Grammar-Guided Machine Discovery. Ecole Polytechnique, France (2000). (Available at: http://www.researchindex.com. Accessed: 30, May, 2001).
  15. 15.
    Rosca, J.P. and Ballard, D.H.: Genetic Programming with Adaptive Representations. Technical Report 489, The University of Rochester, Feb 1994.Google Scholar
  16. 16.
    Ryan, C., Collin, J.J., O’Neill, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Lecture Note in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming, Springer-Verlag (1998) 83–95.Google Scholar
  17. 17.
    Whigham, P.: Grammatically-based Genetic Programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, Morgan Kaufmann Pub (1995) 33–41.Google Scholar
  18. 18.
    Whigham, P.: Search Bias, Language Bias and Genetic Programming. In Genetic Programming 1996, The MIT Press, USA, (1996) 230–237.Google Scholar
  19. 19.
    Wong, M.L., Leung, K.S.: Evolving Recursive Functions for Even-Parity Problem Using Genetic Programming. In: Angeline, P.J., Kinnear, K.E. Jr. (eds): Advances in Genetic Programming, The MIT Press, USA (1996) 221–240.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Nguyen Xuan Hoai
    • 1
  • R. I. McKay
    • 1
  • D. Essam
    • 1
  1. 1.School of Computer ScienceUniversity of New South WalesCanberraAustralia

Personalised recommendations