The Probabilistic Theory of Linear Complexity

  • Harald Niederreiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 330)

References

  1. [1]
    P. Billingsley: Ergodic Theory and Information, Wiley, New York, 1965.MATHGoogle Scholar
  2. [2]
    N. H. Bingham: Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18, 433–467 (1986).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    U. Krengel: Ergodic Theorems, de Gruyter, Berlin, 1985.MATHGoogle Scholar
  4. [4]
    L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences, Wiley, New York, 1974.MATHGoogle Scholar
  5. [5]
    R. Lidl and H. Niederreiter: Introduction to Finite Fields and Their Applications, Cambridge Univ. Press, Cambridge, 1986.MATHGoogle Scholar
  6. [6]
    M. Loève: Probability Theory, 3rd ed., Van Nostrand, New York, 1963.MATHGoogle Scholar
  7. [7]
    J. L. Massey: Shift-register synthesis and BCH decoding, IEEE Trans. Information Theory 15, 122–127 (1969).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    H. Niederreiter: Sequences with almost perfect linear complexity profile, Advances in Cryptology — EUROCRYPT’ 87 (D. Chaum and W. L. Price, eds.), Lecture Notes in Computer Science, Vol. 304, pp. 37–51, Springer, Berlin, 1988.Google Scholar
  9. [9]
    M. Rosenblatt: Random Processes, 2nd ed., Springer, New York, 1974.MATHGoogle Scholar
  10. [10]
    R. A. Rueppel: Linear complexity and random sequences, Advances in Cryptology — EUROCRYPT’ 85 (F. Pichler, ed.), Lecture Notes in Computer Science, Vol. 219, pp. 167–188, Springer, Berlin, 1986.CrossRefGoogle Scholar
  11. [11]
    R. A. Rueppel: Analysis and Design of Stream Ciphers, Springer, Berlin, 1986.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Mathematical InstituteAustrian Academy of SciencesViennaAustria

Personalised recommendations