Notions of Computation Determine Monads

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2303)


We model notions of computation using algebraic operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad. We focus on semantics for global and local state, showing that taking operations and equations as primitive yields a mathematical relationship that reflects their computational relationship.


Global State Algebraic Operation Closed Structure Forgetful Functor Countable Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. O. Anderson and A. J. Power, A Representable Approach to Finite Nondeterminism, in Theoret. Comput. Sci., Vol. 177, No. 1, pp. 3–25, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Benton, J. Hughes, and E. Moggi, Monads and Effects, APPSEM’ 00 Summer School, 2000.Google Scholar
  3. 3.
    M. P. Fiore, E. Moggi, and D. Sangiorgi, A Fully-Abstract Model for the pi-Calculus, in Proc. LICS’ 96, pp. 43–54, Washington: IEEE Press, 1996.Google Scholar
  4. 4.
    R. Heckmann, Probabilistic Domains, in Proc. CAAP’ 94, LNCS, Vol. 136, pp. 21–56, Berlin: Springer-Verlag, 1994.Google Scholar
  5. 5.
    M. C. B. Hennessy and G. D. Plotkin, Full Abstraction for a Simple Parallel Programming Language, in Proc. MFCS’ 79 (ed. J. Beĉvár), LNCS, Vol. 74, pp. 108–120, Berlin: Springer-Verlag, 1979.Google Scholar
  6. 6.
    J. M. E. Hyland, G. D. Plotkin, and A. J. Power, Combining Computataional Effects: Commutativity and Sum, submitted, 2002.Google Scholar
  7. 7.
    C. Jones, Probabilistic Non-Determinism, Ph.D. Thesis, University of Edinburgh, Report ECS-LFCS-90-105, 1990.Google Scholar
  8. 8.
    C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, in Proc. LICS’ 89, pp. 186–195, Washington: IEEE Press, 1989.Google Scholar
  9. 9.
    G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge: Cambridge University Press, 1982.zbMATHGoogle Scholar
  10. 10.
    G. M. Kelly and A. J. Power, Adjunctions whose Counits are Coequalizers, and Presentations of Finitary Enriched Monads, in J. Pure Appl. Algebra, Vol. 89, pp. 163–179, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. B. Levy, Call-by-Push-Value: A Subsuming Paradigm, Ph.D. thesis, Queen Mary College, 2001.Google Scholar
  12. 12.
    P. B. Levy, Call-by-Push-Value, in Proc. TLCA’ 99 (ed. J.-Y. Girard), LNCS, Vol. 1581, pp. 228–242, Berlin: Springer-Verlag, 1999.Google Scholar
  13. 13.
    S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.Google Scholar
  14. 14.
    E. Moggi, Computational Lambda-Calculus and Monads, in Proc. LICS’ 89, pp. 14–23, Washington: IEEE Press, 1989.Google Scholar
  15. 15.
    E. Moggi, An Abstract View of Programming Languages, University of Edinburgh, Report ECS-LFCS-90-113, 1989.Google Scholar
  16. 16.
    E. Moggi, Notions of computation and monads, Inf. and Comp., Vol. 93, No. 1, pp. 55–92, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. W. O’Hearn and R. D. Tennent, Algol-like Languages, Progress in Theoretical Computer Science, Boston: Birkhauser, 1997.Google Scholar
  18. 18.
    G. D. Plotkin, Domains, URL:, 1983.
  19. 19.
    G. D. Plotkin and A. J. Power, Adequacy for Algebraic Effects, in Proc. FOSSACS 2001 (eds. F. Honsell and M. Miculan), LNCS, Vol. 2030, pp. 1–24, Berlin: Springer-Verlag, 2001.Google Scholar
  20. 20.
    G. D. Plotkin and A. J. Power, Semantics for Algebraic Operations (extended abstract), in Proc. MFPS XVII (eds. S. Brookes and M. Mislove), ENTCS, Vol. 45, Amsterdam: Elsevier, 2001.Google Scholar
  21. 21.
    A. J. Power, Enriched Lawvere Theories, in Theory and Applications of Categories, pp. 83–93, 2000.Google Scholar
  22. 22.
    I. Stark, Names and Higher-Order Functions, Ph.D. thesis, University of Cambridge, 1994.Google Scholar
  23. 23.
    I. Stark, Categorical Models for Local Names, in Lisp and Symbolic Computation, Vol. 9, No. 1, pp. 77–107, 1996. andCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Division of InformaticsUniversity of EdinburghEdinburghScotland

Personalised recommendations