Automatic Profile Reformulation Using a Local Document Analysis

  • Anis Benammar
  • Gilles Hubert
  • Josiane Mothe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2291)


User profiles are more and more used in information retrieval system in order to assist users in finding relevant information. Profiles are continuously updated to evolve at the same time the user information need does. In this paper we present a reformulation strategy used to automatically update the profile content. In a first stage, a local document set is computed from the search results. In a second stage, the local set is analyzed to select the terms to add to the profile expression. Experiments have been performed on an extract from the OHSUMED database to evaluate the effectiveness of the adaptation process.


Relevance Feedback User Information Query Expansion Information Retrieval System Reformulation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attar R., Frankel A. S, Local feedback in Full-Text Retrieval Systems. Journal of associations for Computing Machinery, 24 (3), 397–417, 1977.zbMATHGoogle Scholar
  2. 2.
    Baeza-Yates R., Ribeiro-Neto B. Modern Information Retrieval, Addison-Wesley Ed., ISBN 0-201-39829-X, 1999.Google Scholar
  3. 3.
    Belkin N. J., Croft W.B. Information retrieval and information Filtering: two sides of the same coin, CACM, Pages 29–38, 1992.Google Scholar
  4. 4.
    Belkin N. J. Relevance Feedback versus Local Context Analysis as term suggestion devices, Rutger’s TREC-8 Interactive Track Experience, Proceedings of Trec-8, Pages 565–574, November 16–19, 1999Google Scholar
  5. 5.
    Buckley C., Salton G., Allan J. The effect of adding information in a relevance feedback Environment, Conference on Research and development in Information Retrieval (SIGIR), 1994Google Scholar
  6. 6.
    Boughanem M., Dkaki T., Mothe J., Soulé-Dupuy C. Mercure at Trec-7. 7th International Conference on Text REtrieval TREC7, Harman D.K. (Ed.) SP 500–236, November 11–17, NIST Gaithersburg, 1998.Google Scholar
  7. 7.
    Boughanem M., Chrisment C., Soulé-Dupuy C. Query modification based on relevance back-propagation in ad hoc environment, Information Processing & Management 35 (1999) 121–139.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Croft W.B., Xu J. Query Expansion using local and global document analysis. Proceeding of the 19th Annual International ACM SIGIR Conference on research and development in Information retrieval (SIGIR 96’, Zurich, Switzerland, August 18–22, )1996.Google Scholar
  10. 10.
    Croft W.B., Jing, Y. Corpus-Based Stemming Using Co-occurrence of Word Variants. Transactions On Information Systems Volume 16, number 1 pp 61–81, 1998.CrossRefGoogle Scholar
  11. 11.
    Croft W.B., Xu J. Improving Effectiveness of information retrieval with local context analysis. ACM Transaction on Information systems Volume 18, Number 1, January 2000, Pages 79–112CrossRefGoogle Scholar
  12. 12.
    Koji Eguchi. Incremental Query expansion Using local information of clusters, Proceedings of the 4th World Multiconference on systemics, Cybernetics and informatics (SCI 2000), Vol.2, pp310–316, 2000.Google Scholar
  13. 13.
    Korfhage R. Information storage and retrieval. Wiley Computer Publishing 0-471-14-338 3, 1997.Google Scholar
  14. 14.
    Kwok K. L. TREC-6 English and chinese retrieval experiments using PIRCS. In: D. K. Harman, NIST SP, 6th International Conference on Text Retrieval, Gaithersburg, MD.Google Scholar
  15. 15.
    Mothe J. Correspondance analysis method applied to document re-ranking, Rapport interne IRIT/00-22 R, 2000Google Scholar
  16. 16.
    Robertson S., Hull D. The TREC-9 filtering track final report, TREC-9, 2000Google Scholar
  17. 17.
    Rocchio J. J. Relevance feedback in information retrieval, In G. Salton, editor, The Smart retrieval System, Experiments in Automatic Document processing,. Prentice Hall Inc., Engelwoods Cliffs, NJ, 1971.Google Scholar
  18. 18.
    Sparck J. Automatic Keywords Classification for Information Retrieval, Buterworths, London, 1971.Google Scholar
  19. 19.
    Salton G. The SMART retrieval system, Experiments in automatic document processin, Prentice Hall Inc., Englewood Cliffs, NJ, 1971.Google Scholar
  20. 20.
    Yonggang Q., Frei H. F. Concept based query expansion. In proceedings of the 16th ACM SIGIR Conference on Research and development in information retrieval, pages 160–169, Pittsburgh, PA, USA, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Anis Benammar
    • 1
  • Gilles Hubert
    • 1
  • Josiane Mothe
    • 1
    • 2
  1. 1.Institut de recherche en informatique de ToulouseToulouse CedexFrance
  2. 2.Institut universitaire de formation des maîtresFrance

Personalised recommendations