The Regularity Lemma and Its Applications in Graph Theory

  • János Komlós
  • Ali Shokoufandeh
  • Miklós Simonovits
  • Endre Szemerédi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2292)


Szemerédi’s Regularity Lemma is an important tool in discrete mathematics. It says that, in some sense, all graphs can be approximated by random-looking graphs. Therefore the lemma helps in proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs. In the last few years more and more new results were obtained by using the Regularity Lemma, and also some new variants and generalizations appeared. Komlós and Simonovits have written a survey on the topic [96]. The present survey is, in a sense, a continuation of the earlier survey. Here we describe some sample applications and generalizations. To keep the paper self-contained we decided to repeat (sometimes in a shortened form) parts of the first survey, but the emphasis is on new results.


Random Graph Chromatic Number Hamiltonian Cycle Arithmetic Progression Complete Bipartite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ajtai, J. Komlós, M. Simonovits and E. Szemerédi, Solution of the Erdős-Sós Conjecture, in preparation.Google Scholar
  2. [2]
    N. Alon, R. Duke, H. Leffman, V. Rödl, R. Yuster, The algorithmic aspects of the regularity lemma, FOCS 33 (1992), 479-481, Journal of Algorithms 16 (1994), 80–109.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. Alon, E. Fischer, 2-factors in dense graphs, Discrete Math.Google Scholar
  4. [4]
    N. Alon, R. Yuster, Almost H-factors in dense graphs, Graphs and Combinatorics 8 (1992), 95–102.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    N. Alon, R. Yuster, H-factors in dense graphs, J. Combinatorial Theory B66 (1996), 269–282.MathSciNetGoogle Scholar
  6. [6]
    L. Babai, M. Simonovits, J. Spencer, Extremal subgraphs of random graphs, Journal of Graph Theory 14 (1990), 599–622.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    V. Bergelson, A. Leibman, Polynomial extension of van der Waerden’s and Szemerédi’s theorem.Google Scholar
  8. [8]
    B. Bollobás, Extremal graph theory, Academic Press, London (1978).zbMATHGoogle Scholar
  9. [9]
    Béla Bollobás, The work of William Timothy Gowers, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Doc. Math. 1998, Extra Vol. I, 109-118 (electronic).Google Scholar
  10. [10]
    B. Bollobás, P. Erdős, On a Ramsey-Turán type problem, Journal of Combinatorial Theory B21 (1976), 166–168.CrossRefGoogle Scholar
  11. [11]
    B. Bollobás, P. Erdős, M. Simonovits, E. Szemerédi, Extremal graphs without large forbidden subgraphs, Annals of Discrete Mathematics 3 (1978), 29–41, North-Holland.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Bollobás, A. Thomason, The structure of hereditary properties and colourings of random graphs. Combinatorica 20 (2000), 173–202.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    W. G. Brown, P. Erdős, M. Simonovits, Extremal problems for directed graphs, Journal of Combinatorial Theory B15 (1973), 77–93.CrossRefGoogle Scholar
  14. [14]
    W. G. Brown, P. Erdős, M. Simonovits, Inverse extremal digraph problems, Colloq. Math. Soc. J. Bolyai 37 (Finite and Infinite Sets), Eger (Hungary) 1981, Akad. Kiadó, Budapest (1985), 119–156.Google Scholar
  15. [15]
    W. G. Brown, P. Erdős, M. Simonovits, Algorithmic solution of extremal digraph problems, Transactions of the American Math. Soc. 292/2 (1985), 421–449.CrossRefGoogle Scholar
  16. [16]
    W. G. Brown, P. Erdős, V. T. Sós, Some extremal problems on r-graphs, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971), 53–63. Academic Press, New York, 1973.Google Scholar
  17. [17]
    W. G. Brown, P. Erdős, V. T. Sós, On the existence of triangulated spheres in 3-graphs, and related problems, Period. Math. Hungar. 3 (1973), 221–228.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    W. G. Brown, M. Simonovits, Digraph extremal problems, hypergraph extremal problems, and densities of graph structures, Discrete Mathematics 48 (1984), 147–162.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Burr, P. Erdős, P. Frankl, R. L. Graham, V. T. Sós, Further results on maximal antiramsey graphs, Proc. Kalamazoo Combin. Conf. (1989), 193–206.Google Scholar
  20. [20]
    S. Burr, P. Erdős, R. L. Graham, V. T. Sós, Maximal antiramsey graphs and the strong chromatic number (The nonbipartite case) Journal of Graph Theory 13 (1989), 163–182.CrossRefGoogle Scholar
  21. [21]
    L. Caccetta, R. Häggkvist, On diameter critical graphs, Discrete Mathematics 28 (1979), 223–229.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Fan R. K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241–252.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    F. R. K. Chung, R. L. Graham, R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345–362.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    V. Chvátal, V. Rödl, E. Szemerédi, W. T. Trotter Jr., The Ramsey number of a graph with bounded maximum degree, Journal of Combinatorial Theory B34 (1983), 239–243.CrossRefGoogle Scholar
  25. [25]
    V. Chvátal, E. Szemerédi, On the Erdős-Stone theorem, Journal of the London Math. Soc. 23 (1981), 207–214.zbMATHCrossRefGoogle Scholar
  26. [26]
    V. Chvátal, E. Szemerédi, Notes on the Erdős-Stone theorem, Combinatorial Mathematics, Annals of Discrete Mathematics 17 (1983), (Marseille-Luminy, 1981), 183–190, North-Holland, Amsterdam-New York, 1983.zbMATHGoogle Scholar
  27. [27]
    K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hung. 14 (1963), 423–439.zbMATHCrossRefGoogle Scholar
  28. [28]
    W. Deuber, Generalizations of Ramsey’s theorem, Proc. Colloq. Math. Soc. János Bolyai 10 (1974), 323–332.MathSciNetGoogle Scholar
  29. [29]
    G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 68–81.CrossRefMathSciNetGoogle Scholar
  30. [30]
    Duke, Richard A., Hanno Lefmann, Hanno, Vojtěch Rödl, A fast approximation algorithm for computing the frequencies of subgraphs in a given graph, SIAM J. Comput. 24 (1995), 598–620.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    R. A. Duke, V. Rödl, On graphs with small subgraphs of large chromatic number, Graphs Combin. 1 (1985), 91–96.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    R. A. Duke, V. Rödl, The Erdös-Ko-Rado theorem for small families, J. Combin. Theory Ser. A65 (1994), 246–251.CrossRefGoogle Scholar
  33. [33]
    P. Erdős, Some recent results on extremal problems in graph theory, Results, International Symposium, Rome (1966), 118–123.Google Scholar
  34. [34]
    P. Erdős, On some new inequalities concerning extremal properties of graphs, Theory of Graphs, Proc. Coll. Tihany, Hungary (P. Erdős and G. Katona eds.) Acad. Press N. Y. (1968), 77–81.Google Scholar
  35. [35]
    P. Erdős, On some extremal problems on r-graphs, Discrete Mathematics 1 (1971), 1–6.CrossRefMathSciNetGoogle Scholar
  36. [36]
    P. Erdős, Some old and new problems in various branches of combinatorics, Proc. 10th Southeastern Conf. on Combinatorics, Graph Theory and Computation, Boca Raton (1979) Vol I., Congressus Numerantium 23 (1979), 19–37.Google Scholar
  37. [37]
    P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25–42.CrossRefMathSciNetGoogle Scholar
  38. [38]
    P. Erdős, P. Frankl, V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113–121.CrossRefMathSciNetGoogle Scholar
  39. [39]
    P. Erdős, Z. Füredi, M. Loebl, V. T. Sós, Studia Sci. Math. Hung. 30 (1995), 47–57. (Identical with the book Combinatorics and its applications to regularity and irregularity of structures, W. A. Deuber and V. T. Sós eds., Akadémiai Kiadó, 47-58.)Google Scholar
  40. [40]
    P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337–356.CrossRefGoogle Scholar
  41. [41]
    P. Erdős, A. Hajnal, On complete topological subgraphs of certain graphs, Annales Univ. Sci. Budapest 7 (1969), 193–199.Google Scholar
  42. [42]
    P. Erdős, A. Hajnal, L. Pósa, Strong embedding of graphs into colored graphs, Proc. Colloq. Math. Soc. János Bolyai 10 (1975), 585–595.Google Scholar
  43. [43]
    P. Erdős, A. Hajnal, M. Simonovits, V. T. Sós, E. Szemerédi, Turán-Ramsey theorems and simple asymptotically extremal structures, Combinatorica 13 (1993), 31–56.CrossRefMathSciNetGoogle Scholar
  44. [44]
    P. Erdős, A. Hajnal, M. Simonovits, V. T. Sós, E. Szemerédi, Turán-Ramsey theorems for Kp-stability numbers, Proc. Cambridge, also in Combinatorics, Probability and Computing 3 (1994) (P. Erdős birthday meeting), 297–325.Google Scholar
  45. [45]
    P. Erdős, A. Hajnal, V. T. Sós, E. Szemerédi, More results on Ramsey-Turán type problems, Combinatorica 3 (1983), 69–81.CrossRefMathSciNetGoogle Scholar
  46. [46]
    P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung. 1 (1966), 51–57.Google Scholar
  47. [47]
    P. Erdős, M. Simonovits, The chromatic properties of geometric graphs, Ars Combinatoria 9 (1980), 229–246.MathSciNetGoogle Scholar
  48. [48]
    P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181–192.CrossRefMathSciNetGoogle Scholar
  49. [49]
    P. Erdős, M. Simonovits, How many colours are needed to colour every pentagon of a graph in five colours? (to be published).Google Scholar
  50. [50]
    P. Erdős, V. T. Sós, The tree conjecture, Mentioned in P. Erdős, Extremal problems in graph theory, Theory of graphs and its applications, Proc. of the Symposium held in Smolenice in June 1963, 29–38.Google Scholar
  51. [51]
    P. Erdős, V. T. Sós, Some remarks on Ramsey’s and Turán’s theorem, Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), 395–404, North-Holland, Amsterdam, 1970.Google Scholar
  52. [52]
    P. Erdős, A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1089–1091.Google Scholar
  53. [53]
    P. Erdős, P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.CrossRefGoogle Scholar
  54. [54]
    G. Fan, R. Häggkvist, The square of a hamiltonian cycle, SIAM J. Disc. Math.Google Scholar
  55. [55]
    G. Fan, H. A. Kierstead, The square of paths and cycles, Journal of Combinatorial Theory B63 (1995), 55–64.CrossRefMathSciNetGoogle Scholar
  56. [56]
    G. Fan, H. A. Kierstead, The square of paths and cycles II.Google Scholar
  57. [57]
    R. J. Faudree, R. J. Gould, M. Jacobson, On a problem of Pósa and Seymour.Google Scholar
  58. [58]
    R. J. Faudree, R. J. Gould, M. S. Jacobson, R. H. Schelp, Seymour’s conjecture, Advances in Graph Theory (V. R. Kulli ed.), Vishwa International Publications (1991), 163–171.Google Scholar
  59. [59]
    P. Frankl, Z. Füredi, Exact solution of some Turán-type problems, Journal of Combinatorial Theory A45 (1987), 226–262.Google Scholar
  60. [60]
    P. Frankl, J. Pach, An extremal problem on Kr-free graphs, Journal of Graph Theory 12 (1988), 519–523.zbMATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    P. Frankl, V. Rödl, The Uniformity Lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312.zbMATHCrossRefMathSciNetGoogle Scholar
  62. [62]
    Alan Frieze, Ravi Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.zbMATHCrossRefMathSciNetGoogle Scholar
  63. [63]
    Alan Frieze, Ravi Kannan, A simple algorithm for constructing Szemerédi’s regularity partition, Electron. J. Combin. 6 (1999), Research Paper 17 (electronic).Google Scholar
  64. [64]
    Z. Füredi, Turán type problems, in Surveys in Combinatorics (1991), Proc. of the 13th British Combinatorial Conference, (A. D. Keedwell ed.) Cambridge Univ. Press. London Math. Soc. Lecture Note Series 166 (1991), 253–300.Google Scholar
  65. [65]
    Z. Füredi, The maximum number of edges in a minimal graph of diameter 2, Journal of Graph Theory 16 (1992), 81–98.zbMATHMathSciNetCrossRefGoogle Scholar
  66. [66]
    H. Fcurstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Journal d’Analyse Math. 31 (1977), 204–256.CrossRefGoogle Scholar
  67. [67]
    H. Fürstenberg, A polynomial Szemerédi theorem, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 1–16, Bolyai Soc. Math. Stud., 2, János Bolyai Math. Soc., Budapest, 1996Google Scholar
  68. [68]
    H. Fürstenberg, Y. Katznelson, Idempotents in compact semigroups and Ramsey theory, Israel Journal of Mathematics 68 (1989), 257–270.MathSciNetCrossRefGoogle Scholar
  69. [69]
    H. Fürstenberg, Y. Katznelson, A density version of the Hales-Jewett theorem, Journal d'Analyse Math. 57 (1991), 64–119.Google Scholar
  70. [70]
    W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal. 7 (1997), 322–337.zbMATHCrossRefMathSciNetGoogle Scholar
  71. [71]
    R. L. Graham, B. L. Rothschild, J. Spencer, Ramsey Theory, Wiley Interscience, Series in Discrete Mathematics (1980).Google Scholar
  72. [72]
    A. Hajnal, W. Maass, Gy. Turán, On the communication complexity of graph properties, 20th STOC, Chicago (1988), 186–191.Google Scholar
  73. [73]
    A. Hajnal, E. Szemerédi, Proof of a conjecture of Erdős, Combinatorial Theory and its Applications vol. II (P. Erdős, A. Rényi and V. T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam (1970), 601–623.Google Scholar
  74. [74]
    P. E. Haxell, Y. Kohayakawa, The size-Ramsey number of trees, Israel J. Math. 89 (1995), 261–274.zbMATHMathSciNetCrossRefGoogle Scholar
  75. [75]
    P. E. Haxell, Y. Kohayakawa, On an anti-Ramsey property of Ramanujan graphs, Random Structures and Algorithms 6 (1995), 417–431.zbMATHCrossRefMathSciNetGoogle Scholar
  76. [76]
    P. E. Haxell, Y. Kohayakawa, T. Luczak, The induced size-Ramsey number of cycles, Combinatorics, Probability and Computing 4 (1995), 217–239.zbMATHMathSciNetCrossRefGoogle Scholar
  77. [77]
    P. E. Haxell, Y. Kohayakawa, T. Luczak, Turán’s extremal problem in random graphs: forbidding even cycles, Journal of Combinatorial Theory B64 (1995), 273–287.CrossRefMathSciNetGoogle Scholar
  78. [78]
    P. E. Haxell, Y. Kohayakawa, T. Luczak, Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica 16 (1996), 107–122.zbMATHCrossRefMathSciNetGoogle Scholar
  79. [79]
    P. E. Haxell, T. Luczak, P. W. Tingley, Ramsey Numbers for Trees of Small Maximum Degree.Google Scholar
  80. [80]
    D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385–394.zbMATHCrossRefMathSciNetGoogle Scholar
  81. [81]
    Y. Kohayakawa, The Regularity Lemma of Szemerédi for sparse graphs, manuscript, August 1993.Google Scholar
  82. [82]
    Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro) (1997), 216–230, Springer, Berlin.Google Scholar
  83. [83]
    Y. Kohayakawa, B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random Structures Algorithms 11 (1997), 245–276.zbMATHCrossRefMathSciNetGoogle Scholar
  84. [84]
    Y. Kohayakawa, T. Luczak, V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arithmetica, 75 (1996), 133–163.zbMATHMathSciNetGoogle Scholar
  85. [85]
    Y. Kohayakawa, T. Luczak, V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), 133–163.zbMATHMathSciNetGoogle Scholar
  86. [86]
    Y. Kohayakawa, T. Luczak, V. Rödl, On K 4-free subgraphs of random graphs, Combinatorica 17 (1997), 173–213.zbMATHCrossRefMathSciNetGoogle Scholar
  87. [87]
    J. Komlós, The blow-up lemma, Recent trends in combinatorics (Mátraháza, 1995), Combin. Probab. Comput. 8 (1999), 161–176.zbMATHCrossRefMathSciNetGoogle Scholar
  88. [88]
    J. Komlós, Tiling Turán Theorems, Combinatorica 20 (2000), 203–218.zbMATHCrossRefMathSciNetGoogle Scholar
  89. [89]
    J. Komlós, G. N. Sárközy, E. Szemerédi, Proof of a packing conjecture of Bollobás, AMS Conference on Discrete Mathematics, DeKalb, Illinois (1993), Combinatorics, Probability and Computing 4 (1995), 241–255.Google Scholar
  90. [90]
    J. Komlós, G. N. Sárközy, E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), Random Structures and Algorithms 9 (1996), 193–211.CrossRefGoogle Scholar
  91. [91]
    J. Komlós, G. N. Sárközy, E. Szemerédi, Blow-up Lemma, Combinatorica 17 (1997), 109–123.zbMATHCrossRefMathSciNetGoogle Scholar
  92. [92]
    J. Komlós, G. N. Sárközy, E. Szemerédi, An algorithmic version of the blow-up lemma, Random Structures Algorithms 12 (1998), 297–312.zbMATHCrossRefMathSciNetGoogle Scholar
  93. [93]
    J. Komlós, G. N. Sárközy, E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998), 167–176.zbMATHCrossRefMathSciNetGoogle Scholar
  94. [94]
    János Komlós, Gábor Sárközy, Endre Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), 43–60.zbMATHCrossRefMathSciNetGoogle Scholar
  95. [95]
    J. Komlós, G. N. Sárközy, E. Szemerédi, Proof of the Alon-Yuster conjecture, Random Structures and Algorithms.Google Scholar
  96. [96]
    J. Komlós, M. Simonovits,Szemerédi’s regularity lemma and its applications in graph theory, Bolyai Society Mathematical Studies 2, Combinatorics, Paul Erdős is Eighty (Volume 2) (D. Miklós, V. T. Sós, T. Szőnyi eds.), Keszthely (Hungary) (1993), Budapest (1996), 295–352.Google Scholar
  97. [97]
    L. Lovász, M. Simonovits, On the number of complete subgraphs of a graph I, Proc. Fifth British Combin. Conf. Aberdeen (1975), 431–442.Google Scholar
  98. [98]
    L. Lovász, M. Simonovits, On the number of complete subgraphs of a graph II, Studies in Pure Math (dedicated to the memory of P. Turán), Akadémiai Kiadó and Birkhäuser Verlag (1983), 459–495.Google Scholar
  99. [99]
    T. Luczak, R(C n, C n, C n) ≤ (4 + o(1))n, J. Combin. Theory B75 (1999), 174–187.MathSciNetGoogle Scholar
  100. [100]
    Luczak, Tomasz; Rödl, Vojtěch; Szemerédi, Endre, Partitioning two-coloured complete graphs into two monochromatic cycles, Combin. Probab. Comput. 7 (1998), 423–436.zbMATHCrossRefMathSciNetGoogle Scholar
  101. [101]
    J. Nešetřil, V. Rödl, Partition theory and its applications, in Surveys in Combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge, 1979), pp. 96–156, (B. Bollobás ed.), London Math. Soc. Lecture Notes Series, Cambridge Univ. Press, Cambridge-New York, 1979.Google Scholar
  102. [102]
    P. Pudlák, J. Sgall, An upper bound for a communication game, related to time-space tradeoffs, Electronic Colloquium on Computational Complexity, TR 95-010, (1995).Google Scholar
  103. [103]
    K. F. Roth, On certain sets of integers (II), J. London Math. Soc. 29 (1954), 20–26.zbMATHCrossRefMathSciNetGoogle Scholar
  104. [104]
    K. F. Roth, Irregularities of sequences relative to arithmetic progressions (III), Journal of Number Theory 2 (1970), 125–142.zbMATHCrossRefMathSciNetGoogle Scholar
  105. [105]
    K. F. Roth, Irregularities of sequences relative to arithmetic progressions (IV), Periodica Math. Hung. 2 (1972), 301–326.zbMATHCrossRefGoogle Scholar
  106. [106]
    V. Rödl, A generalization of Ramsey Theorem and dimension of graphs, Thesis, 1973, Charles Univ. Prague; see also: A generalization of Ramsey Theorem for graphs, hypergraphs and block systems, Zielona Gora (1976), 211–220.Google Scholar
  107. [107]
    V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Mathematics 59 (1986), 125–134.zbMATHCrossRefMathSciNetGoogle Scholar
  108. [108]
    V. Rödl, Sparse Regularity, Personal communication.Google Scholar
  109. [109]
    V. Rödl, A. Ruciński, Random graphs with monochromatic triangles in every edge coloring, Random Structures and Algorithms 5 (1994), 253–270.zbMATHCrossRefMathSciNetGoogle Scholar
  110. [110]
    V. Rödl, A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.zbMATHCrossRefMathSciNetGoogle Scholar
  111. [111]
    I. Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Keszthely, 1976), 18 (1978), Vol. II., 939–945, North-Holland, Amsterdam-New York.Google Scholar
  112. [112]
    G. N. Sárközy, Fast parallel algorithm for finding Hamiltonian cycles and trees in graphs.Google Scholar
  113. [113]
    P. Seymour, Problem section, Combinatorics: Proceedings of the British Combinatorial Conference 1973 (T. P. McDonough and V. C. Mavron eds.), Cambridge University Press (1974), 201–202.Google Scholar
  114. [114]
    A. F. Sidorenko, Boundedness of optimal matrices in extremal multigraph and digraph problems, Combinatorica 13 (1993), 109–120.zbMATHCrossRefMathSciNetGoogle Scholar
  115. [115]
    M. Simonovits, A method for solving extremal problems in graph theory, Theory of graphs, Proc. Coll. Tihany (1966) (P. Erdős and G. Katona eds.), Acad. Press, N.Y. (1968), 279–319.Google Scholar
  116. [116]
    M. Simonovits, Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions, Discrete Mathematics 7 (1974), 349–376.zbMATHMathSciNetGoogle Scholar
  117. [117]
    M. Simonovits, Extremal graph theory, Selected Topics in Graph Theory (L. Beineke and R. Wilson eds.) Academic Press, London, New York, San Francisco (1985), 161–200.Google Scholar
  118. [118]
    M. Simonovits, V. T. Sós, Szemerédi’s partition and quasirandomness, Random Structures and Algorithms 2 (1991), 1–10.zbMATHMathSciNetCrossRefGoogle Scholar
  119. [119]
    M. Simonovits and V. T. Sós, Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs, Combinatorica 17 (1997), 577–596.zbMATHCrossRefMathSciNetGoogle Scholar
  120. [120]
    M. Simonovits and V. T. Sós, Hereditarily extended properties, quasi-random graphs and induced subgraphs, to be published.Google Scholar
  121. [121]
    M. Simonovits and V. T. Sós, Ramsey-Turán theory, Proc. Prague Meeting, Fifth Czech-Slovak International Symposia, Discrete Mathematics, to appear.Google Scholar
  122. [122]
    V. T. Sós, On extremal problems in graph theory, Proc. Calgary International Conf. on Combinatorial Structures and their Application, Gordon and Breach, N. Y. (1969), 407–410.Google Scholar
  123. [123]
    V. T. Sós, Interaction of Graph Theory and Number Theory, in Proc. Conf. Paul Erdős and His Mathematics, Budapest, 1999. Springer Verlag, 2001.Google Scholar
  124. [124]
    E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hung. 20 (1969), 89–104.zbMATHCrossRefGoogle Scholar
  125. [125]
    E. Szemerédi, On graphs containing no complete subgraphs with 4 vertices (in Hungarian), Matematikai Lapok 23 (1972), 111–116.Google Scholar
  126. [126]
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199–245.zbMATHMathSciNetGoogle Scholar
  127. [127]
    E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S. No 260-Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399–401.Google Scholar
  128. [128]
    E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Acad. Sci. Hung. 56 (1990), 155–158.zbMATHGoogle Scholar
  129. [129]
    A. Thomason, Pseudo-random graphs, in Proc. of Random Graphs, Poznán (1985) (M. Karoński ed.), Annals of Discr. Math. (North-Holland) 33 (1987), 307–331. See also: Dense expanders and bipartite graphs, Discrete Mathematics 75 (1989), 381-386.Google Scholar
  130. [130]
    Pál Turán, On an extremal problem in graph theory (in Hungarian), Matematikaiés Fizikai Lapok 48 (1941), 436–452.zbMATHGoogle Scholar
  131. [131]
    B. L. Van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde 15 (1927), 212–216.Google Scholar
  132. [132]
    R. Yuster, The number of edge colorings with no monochromatic triangle, J. Graph Theory 21 (1996), 441–452.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • János Komlós
    • 1
    • 2
  • Ali Shokoufandeh
    • 3
  • Miklós Simonovits
    • 1
    • 2
  • Endre Szemerédi
    • 1
    • 2
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.Hungarian Academy of SciencesHungary
  3. 3.Department of Mathematics and Computer ScienceDrexel UniversityPhiladelphia

Personalised recommendations