UMiner: A Data Mining System Handling Uncertainty and Quality

  • Christos Amanatidis
  • Maria Halkidi
  • Michalis Vazirgiannis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2287)

Abstract

In this paper we present UMiner, a new data mining system, which improves the quality of the data analysis results, handles uncertainty in the clustering & classification process and improves reasoning and decisionmaking.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Berry, G. Linoff. Data Mining Techniques For marketing, Sales and Customer Support. John Willey & Sons, Inc, 1996.Google Scholar
  2. 2.
    U. Fayyad, G. Piatesky-Shapiro, P. Smuth and Ramasamy Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI Press 1996Google Scholar
  3. 3.
    U. Fayyad, R. Uthurusamy. “Data Mining and Knowledge Discovery in Databases”, Communications of the ACM. Vol.39, No11, November 1996.Google Scholar
  4. 4.
    W. Kelly, J. Painter. “Hypertrapezoidal Fuzzy Membership Functions. 5th IEEE Int. Conf. on Fuzzy Systems, New Orleans, Sept.8, pp1279–1284, 1996.Google Scholar
  5. 5.
    S. Theodoridis, K. Koutroubas. Pattern recognition, Academic Press, 1999Google Scholar
  6. 6.
    M. Halkidi, M. Vazirgiannis, Y. Batistakis. “Quality scheme assessment in the clustering process”, In Proceedings of PKDD, Lyon, France, 2000.Google Scholar
  7. 7.
    M. Vazirgiannis, M. Halkidi. “Uncertainty handling in the datamining process with fuzzy logic”, in the proceedings of the IEEE-FUZZY Conf, Texas, May, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Christos Amanatidis
    • 1
  • Maria Halkidi
    • 1
  • Michalis Vazirgiannis
    • 1
  1. 1.Dept of InformaticsAthens Univ. of Economics and BusinessCity

Personalised recommendations