ProPolyne: A Fast Wavelet-Based Algorithm for Progressive Evaluation of Polynomial Range-Sum Queries

  • Rolfe R. Schmidt
  • Cyrus Shahabi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2287)


Many range aggregate queries can be efficiently derived from a class of fundamental queries: the polynomial range-sums. After demonstrating how any range-sum can be evaluated exactly in the wavelet domain, we introduce a novel pre-aggregation method called ProPolyne to evaluate arbitrary polynomial range-sums progressively. At each step of the computation, ProPolyne makes the best possible wavelet approximation of the submitted query. The result is a data-independent approximate query answering technique which uses data structures that can be maintained efficiently. ProPolyne’s performance as an exact algorithm is comparable to the best known MOLAP techniques. Our experimental results show that this approach of approximating queries rather than compressing data produces consistent and superior approximate results when compared to typical wavelet-based data compression techniques.


Range Query Haar Wavelet Query Evaluation Data Cube Aggregate Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Ambite, C. Shahabi, R. R. Schmidt, and A. Philpot. Fast approximate evaluation of OLAP queries for integrated statistical data. In Nat’l Conf. for Digital Government Research, Los Angeles, May 2001.Google Scholar
  2. 2.
    K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate query processing using wavelets. In Proc. VLDB, pages 111–122, 2000.Google Scholar
  3. 3.
    C.-Y. Chan and Y. E. Ionnidis. Hierarchical cubes for range-sum queries. In Proc. VLDB, pages 675–686, 1999.Google Scholar
  4. 4.
    I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure and Appl. Math., 41:909–996, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Geffner, D. Agrawal, and A. E. Abbadi. The dynamic data cube. In Proc. EDBT, pages 237–253, 2000.Google Scholar
  6. 6.
    S. Geffner, D. Agrawal, A. E. Abbadi, and T. Smith. Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes. In Proc. ICDE, pages 328–335, 1999.Google Scholar
  7. 7.
    A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Optimal and approximate computation of summary statistics for range aggregates. In Proc. ACM PODS, pages 228–237, 2001.Google Scholar
  8. 8.
    A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In Proc. VLDB, 2001.Google Scholar
  9. 9.
    D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating multidimensional aggregate range queries over real attributes. In Proc. ACM SIGMOD, pages 463–474, 2000.Google Scholar
  10. 10.
    J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation. In Proc. ACM SIGMOD, pages 171–182, 1997.Google Scholar
  11. 11.
    C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes. In Proc. ACM SIGMOD, pages 73–88, 1997.Google Scholar
  12. 12.
    I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries with a multi-resolution tree structure. In Proc. ACM SIGMOD, pages 401–412, 2001.Google Scholar
  13. 13.
    V. Poosala and V. Ganti. Fast approximate answers to aggregate queries on a data cube. In Proc. SSDBM, pages 24–33, 1999.Google Scholar
  14. 14.
    W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. Cambridge Univ. Press, 1992.Google Scholar
  15. 15.
    M. Riedewald, D. Agrawal, and A. E. Abbadi. pCube: Update-efficient online aggregation with progressive feedback. In Proc. SSDBM, pages 95–108, 2000.Google Scholar
  16. 16.
    M. Riedewald, D. Agrawal, and A. E. Abbadi. Space-efficient datacubes for dynamic environments. In Proc. of Conf. on Data Warehousing and Knowledge Discovery (DaWaK), pages 24–33, 2000.Google Scholar
  17. 17.
    M. Riedewald, D. Agrawal, and A. E. Abbadi. Flexible data cubes for online aggregation. In Proc. ICDT, pages 159–173, 2001.Google Scholar
  18. 18.
    R. R. Schmidt and C. Shahabi. Propolyne: A fast wavelet-based technique for progressive evaluation of polynomial range-sum queries, 2001. USC Tech. Report, available at
  19. 19.
    R. R. Schmidt and C. Shahabi. Wavelet based density estimators for modeling OLAP data sets. In SIAM Workshop on Mining Scientific Datasets, Chicago, April 2001. Available at
  20. 20.
    J. Shanmugasundaram, U. Fayyad, and P. Bradley. Compressed data cubes for OLAP aggregate query approximation on continuous dimensions. In Proc. SIGKDD, August 1999.Google Scholar
  21. 21.
    S.-C. Shao. Multivariate and multidimensional OLAP. In Proc. EDBT, pages 120–134, 1998.Google Scholar
  22. 22.
    J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. In Proc. ACM SIGMOD, pages 193–204, 1999.Google Scholar
  23. 23.
    M. V. Wickerhauser. Adapted Wavelet Analysis: From Theory to Software. IEEE Press, 1994.Google Scholar
  24. 24.
    Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Using wavelet decomposition to support progressive and approximate range-sum queries over data cubes. In Proc. CIKM, pages 414–421, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Rolfe R. Schmidt
    • 1
  • Cyrus Shahabi
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations