Temporal Aggregation over Data Streams Using Multiple Granularities

  • Donghui Zhang
  • Dimitrios Gunopulos
  • Vassilis J. Tsotras
  • Bernhard Seeger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2287)

Abstract

Temporal aggregation is an important but costly operation for applications that maintain time-evolving data (data warehouses, temporal databases, etc.). In this paper we examine the problem of computing temporal aggregates over data streams. Such aggregates are maintained using multiple levels of temporal granularities: older data is aggregated using coarser granularities while more recent data is aggregated with finer detail. We present specialized indexing schemes for dynamically and progressively maintaining temporal aggregates. Moreover, these schemes can be parameterized. The levels of granularity as well as their corresponding index sizes (or validity lengths) can be dynamically adjusted. This provides a useful trade-o. between aggregation detail and storage space. Analytical and experimental results show the efficiency of the proposed structures. Moreover, we discuss how the indexing schemes can be extended to solve the more general range temporal and spatiotemporal aggregation problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Agarwal and J. Erickson, “Geometric Range Searching and Its Relatives”, Advances in Discrete and Computational Geometry, B. Chazelle, E. Goodman and R. Pollack (ed.), American Mathematical Society, Providence, 1998.Google Scholar
  2. 2.
    J. L. Bentley, “Multidimensional Divide-and-Conquer”, Communications of the ACM23(4), 1980.Google Scholar
  3. 3.
    C. Bettini, “Semantic Compression of Temporal Data”, Proc. of WAIM, 2001.Google Scholar
  4. 4.
    C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang, “A Glossary of Time Granularity Concepts”, O. Etzion, S. Jajodia and S. M. Sripada (eds.), Temporal Databases: Research and Practice, LNCS 1399, 1998.Google Scholar
  5. 5.
    B. Becker, S. Gschwind, T. Ohler, B. Seeger and P. Widmayer, “An Asymptotically Optimal Multiversion B-Tree”, VLDB Journal 5(4), 1996.Google Scholar
  6. 6.
    C. Bettini, S. Jajodia and X. S. Wang, Time Granularities in Databases, Data Mining, and Temporal Reasoning, Springer, 2000.Google Scholar
  7. 7.
    M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, Springer-Verlag Berlin Heidelberg, Germany, ISBN 3-540-61270-X, 1997.Google Scholar
  8. 8.
    C. Bettini and R. De Sibi, “Symbolic Representation of User-Defined Time Granularities”, Proc. of TIME, 1999.Google Scholar
  9. 9.
    C. Bettini, X. S. Wang and S. Jajodia, “Temporal Semantic Assumptions and Their Use in Databases”, IEEE TKDE 10(2), 1998.Google Scholar
  10. 10.
    P. Domingos and G. Hulten, “Mining high-speed data streams”, Proc. of SIGKDD, 2000.Google Scholar
  11. 11.
    J. Gendrano, B. Huang, J. Rodrigue, B. Moon and R. Snodgrass, ldParallel Algorithms for Computing Temporal Aggregates”, Proc. of ICDE, 1999.Google Scholar
  12. 12.
    J. Gehrke, F. Korn and D. Srivastava, “On Computing Correlated Aggregates over Continual Data Streams”, Proc. of SIGMOD, 2001.Google Scholar
  13. 13.
    S. Guha, N. Koudas and K. Shim, “Data-Streams and Histograms”, Proc. of STOC, 2001.Google Scholar
  14. 14.
    H. Garcia-Molina, W. Labio and J. Yang, “Expiring Data in a Warehouse”, Proc. of VLDB, 1998.Google Scholar
  15. 15.
    S. Guha, N. Mishra, R. Motwani and L. O’Callaghan, “Clustering Data Streams”, Proc. of FOCS, 2000.Google Scholar
  16. 16.
    J. Hellerstein, P. Haas and H. Wang, “Online Aggregation”, Proc. of SIGMOD, 1997.Google Scholar
  17. 17.
    M. R. Henziger, P. Raghavan and S. Rajagopalan, “Computing on Data Streams”, TechReport 1998-011, DEC, May 1998.Google Scholar
  18. 18.
    H. V. Jagadish, I. S. Mumick and A. Silberschatz, “View maintenance issues for the chronicle data model”, Proc. of PODS, 1995.Google Scholar
  19. 19.
    N. Kline and R. Snodgrass, “Computing Temporal Aggregates”, Proc. of ICDE, 1995.Google Scholar
  20. 20.
    I. Lazaridis and S. Mehrotra, “Progressive Approximate Aggregate Queries with a Multi-Resolution Tree Structure”, Proc. of SIGMOD, 2001.Google Scholar
  21. 21.
    J. Matoušek, “Geometric Range Searching”, Computing Surveys 26(4), 1994.Google Scholar
  22. 22.
    B. Moon, I. Lopez and V. Immanuel, “Scalable Algorithms for Large Temporal Aggregation”, Proc. of ICDE, 2000.Google Scholar
  23. 23.
    F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-Verlag, Berlin/Heidelberg, Germany, 1985.Google Scholar
  24. 24.
    D. Papadias, Y. Tao, P. Kalnis and J. Zhang, “Indexing Spatio-Temporal Data Warehouses”, Proc. of ICDE, 2002.Google Scholar
  25. 25.
    J. Skyt, C. S. Jensen and T. B. Pedersen, “Specification-Based Data Reduction in Dimensional Data Warehouses”, TimeCenter TechReport TR-61, 2001.Google Scholar
  26. 26.
    P. Tuma, “Implementing Historical Aggregates in TempIS”, Master’s thesis,Wayne State University, Michigan, 1992.Google Scholar
  27. 27.
    X. Ye and J. Keane, “Processing temporal aggregates in parallel”, Proc. of Int. Conf. on Systems, Man, and Cybernetics, 1997.Google Scholar
  28. 28.
    J. Yang and J. Widom, “Incremental Computation and Maintenance of Temporal Aggregates”, Proc. of ICDE, 2001.Google Scholar
  29. 29.
    D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos and B. Seeger, “Efficient Computation of Temporal Aggregates with Range Predicates”, Proc. of PODS, 2001.Google Scholar
  30. 30.
    D. Zhang, V. J. Tsotras, D. Gunopulos and A. Markowetz, “Efficient Aggregation over Objects with Extent”, TechReport UCR CS 01 01, CS Dept., UC Riverside, 2001. http://www.cs.ucr.edu/?donghui/publications/boxaggr.ps
  31. 31.
    D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, “Temporal Aggregation over Data Streams using Multiple Granularities” (full version), http://www.cs.ucr.edu/?donghui/publications/hta_full.ps

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Donghui Zhang
    • 1
  • Dimitrios Gunopulos
    • 1
  • Vassilis J. Tsotras
    • 1
  • Bernhard Seeger
    • 2
  1. 1.Computer Science DepartmentUniversity of CaliforniaRiverside
  2. 2.Fachbereich Mathematik & InformatikPhilipps Universität MarburgGermany

Personalised recommendations