Dynamic Queries over Mobile Objects

  • Iosif Lazaridis
  • Kriengkrai Porkaew
  • Sharad Mehrotra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2287)


Increasingly applications require the storage and retrieval of spatio-temporal information in a database management system. A type of such information is mobile objects, i.e., objects whose location changes continuously with time. Various techniques have been proposed to address problems of incorporating such objects in databases. In this paper, we introduce new query processing techniques for dynamic queries over mobile objects, i.e., queries that are themselves continuously changing with time. Dynamic queries are natural in situational awareness systems when an observer is navigating through space. All objects visible by the observer must be retrieved and presented to her at very high rates, to ensure a high-quality visualization. We show how our proposed techniques offer a great performance improvement over a traditional approach of multiple instantaneous queries.


Priority Queue Mobile Object Continuous Query Disk Access Query Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multiversion B-tree. VLDB Journal, 5(4):264–275, 1996.CrossRefGoogle Scholar
  2. 2.
    N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust access method for points and rectangles. In ACM SIGMOD, 1990.Google Scholar
  3. 3.
    K. Chakrabarti, K. Porkaew, and S. Mehrotra. Efficient query refinement in multimedia databases. In IEEE ICDE 2000.Google Scholar
  4. 4.
    J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet databa ses. In ACM SIGMOD, 2000.Google Scholar
  5. 5.
    A. Guttman. R-tree: a dynamic index structure for spatial searching. In ACM SIGMOD, 1984.Google Scholar
  6. 6.
    G. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In ACM SIGMOD, 1998.Google Scholar
  7. 7.
    G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Int’l Symposium on Large Spatial Databases, 1995.Google Scholar
  8. 8.
    G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Symposium on Principles of Database Systems, 1999.Google Scholar
  9. 9.
    I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries over mobile objects. (full version) Technical Report TR-DB-01-07, UC Irvine, 2001.Google Scholar
  10. 10.
    D. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method with good guaranteed performance. ACM TODS, 15(4):625–658, 1990.CrossRefGoogle Scholar
  11. 11.
    D. Lomet and B. Salzberg. The performance of a multiversion access method. In ACM SIGMOD, 1990.Google Scholar
  12. 12.
    D. Pfoser and C. Jensen. Capturing the uncertainty of moving-object representations. In SSD, 1999.Google Scholar
  13. 13.
    D. Pfoser, C. Jensen, and Y. Theodoridis. Novel approaches to the indexing of moving object trajectories. In VLDB, 2000.Google Scholar
  14. 14.
    K. Porkaew. Database support for similarity retrieval and querying mobile objects. Technical report, PhD thesis, University of Illinois at Urbana-Champaign, 2000.Google Scholar
  15. 15.
    K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatiotemporal databases. In SSTD 2001, Redondo Beach, CA, USA.Google Scholar
  16. 16.
    J. T. Robinson. The k-d-b-tree: A search structure for large multidimensional dynamic indexes. In ACM SIGMOD, 1981.Google Scholar
  17. 17.
    N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In ACM SIGMOD, 1995.Google Scholar
  18. 18.
    S. Saltenis and C. Jensen. Indexing of moving objects for location-based services. In ICDE(to appear), 2002.Google Scholar
  19. 19.
    S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexing the positions of continuously moving objects. In ACM SIGMOD, 2000.Google Scholar
  20. 20.
    B. Salzberg and V. Tsotras. Comparison of access methods for time-evolving data. ACM Computing Surveys, 31(2):158–221, 1999.CrossRefGoogle Scholar
  21. 21.
    H. Samet. The quadtree and related hierarchial data structures. ACM Computing Surveys, 16(2):187–260, 1984.CrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+ tree: A dynamic index for multi-dimensional objects. In VLDB, 1987.Google Scholar
  23. 23.
    A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In IEEE ICDE 1997.Google Scholar
  24. 24.
    Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point. In SSTD, 2001.Google Scholar
  25. 25.
    J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree based dynamic attribute indexing method. Computer Journal, 41(3):185–200, 1998.zbMATHCrossRefGoogle Scholar
  26. 26.
    D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-only databases. In ACM SIGMOD, 1992.Google Scholar
  27. 27.
    Y. Theodoridis, T. Sellis, A. N. Papadopoulos, and Y. Manolopoulos. Specifications for efficient indexing in spatiotemporal databases. In SSDBM, 1998.Google Scholar
  28. 28.
    O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez. Cost and imprecision in modeling the position of moving objects. In IEEE ICDE, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Iosif Lazaridis
    • 1
  • Kriengkrai Porkaew
    • 2
  • Sharad Mehrotra
    • 1
  1. 1.University of CaliforniaIrvineUSA
  2. 2.King Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations