Efficient Indexing of Spatiotemporal Objects

  • Marios Hadjieleftheriou
  • George Kollios
  • Vassilis J. Tsotras
  • Dimitrios Gunopulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2287)


Spatiotemporal objects i.e., objects which change their position and/or extent over time, appear in many applications. This paper addresses the problem of indexing large volumes of such data. We consider general object movements and extent changes. We further concentrate on “snapshot” as well as small “interval” historical queries on the gathered data. The obvious approach that approximates spatiotemporal objects with MBRs and uses a traditional multidimensional access method to index them is inefficient. Objects that “live” for long time intervals have large MBRs which introduce a lot of empty space. Clustering long intervals has been dealt in temporal databases by the use of partially persistent indices. What differentiates this problem from traditional temporal indexing is that objects are allowed to move/change during their lifetime. Better methods are thus needed to approximate general spatiotemporal objects. One obvious solution is to introduce artificial splits: the lifetime of a long-lived object is split into smaller consecutive pieces. This decreases the empty space but increases the number of indexed MBRs. We first introduce two algorithms for splitting a given spatiotemporal object. Then, given an upper bound on the total number of possible splits, we present three algorithms that decide how the splits should be distributed among the objects so that the total empty space is minimized.


Greedy Algorithm Empty Space Range Query Dynamic Programming Algorithm Priority Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc. of the 19th ACM Symp. on Principles of Database Systems (PODS), pages 175–186, 2000.Google Scholar
  2. 2.
    B. Becker, T. Ohler S. Gschwind, B. Seeger, and P. Widmayer. An Asymptotically Optimal Multiversion B-Tree. VLDB Journal 5(4), pages 264–275, 1996.CrossRefGoogle Scholar
  3. 3.
    N. Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. Proceedings of ACM SIGMOD, pages 220–231, June 1990.Google Scholar
  4. 4.
    F. Burton, J. Kollias, V. Kollias, and D. Matsakis. Implementation of overlapping btrees for time and space efficient representation of collection of similar files. The Computer Journal, Vol.33, No.3, pages 279–280, 1990.CrossRefGoogle Scholar
  5. 5.
    M. Cai and P. Revesz. Parametric r-tree: An index structure for moving objects. In Proc. of the COMAD, 2000.Google Scholar
  6. 6.
    J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making Data Structures Persistent. Journal of Computer and System Sciences, Vol. 38, No. 1, pages 86–124, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Guting, M. Bohlen, M. Erwig, C. Jensen, N. Lorentzos, M. Schneider, and M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. In ACM TODS, Vol. 25, No 1, pages 1–42, 2000.CrossRefGoogle Scholar
  8. 8.
    A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of ACM SIGMOD, pages 47–57, 1984.Google Scholar
  9. 9.
    I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals. Proceedings of VLDB, pages 500–510, September 1994.Google Scholar
  10. 10.
    G. Kollios, D. Gunopulos, and V. Tsotras. Indexing Animated Objects. In Proc. 5th Int. MIS Workshop, Palm Springs Desert, CA, 1999.Google Scholar
  11. 11.
    G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects. In Proc. of the 18th ACM Symp. on Principles of Database Systems (PODS), pages 261–272, June 1999.Google Scholar
  12. 12.
    G. Kollios, D. Gunopulos, V. Tsotras, A. Delis, and M. Hadjieleftheriou. Indexing Animated Objects Using Spatio-Temporal Access Methods. IEEE Trans. Knowledge and Data Engineering, pages 742–777, September 2001.Google Scholar
  13. 13.
    C. Kolovson and M. Stonebraker. Segment Indexes: Dynamic indexing techniques for multidimensional interval data. In Proc. of ACM SIGMOD, pages 138–147, 1991.Google Scholar
  14. 14.
    A. Kumar, V.J. Tsotras, and C. Faloutsos. Designing access methods for bitemporal databases. IEEE Trans. Knowledge and Data Engineering, 10(1):1–20, 1998.CrossRefGoogle Scholar
  15. 15.
    S.T. Leutenegger, M.A. Lopez, and J.M. Edgington. STR: A simple and efficient algorithm for r-tree packing. In Proc. of IEEE ICDE, 1997.Google Scholar
  16. 16.
    D. Lomet and B. Salzberg. Access Methods for Multiversion Data. In Proceedings of ACM SIGMOD Conf.,Portland, Oregon, pages 315–324, 1989.Google Scholar
  17. 17.
    M. Nascimento and J. Silva. Towards historical r-trees. Proc. of SAC, 1998.Google Scholar
  18. 18.
    J. A. Orenstein. Redundancy in spatial databases. In Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, pages 294–305, Portland, Oregon, 31 May–2 June 1989.Google Scholar
  19. 19.
    B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range query performance in spatial data structures. In Proc. of ACM PODS, pages 214–221, 1993.Google Scholar
  20. 20.
    D. Pfoser, C. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Objects. In Proceedings of VLDB, Cairo Egypt, September 2000.Google Scholar
  21. 21.
    K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatio-temporal databases. In Proc. of 7th SSTD, July 2001.Google Scholar
  22. 22.
    S. Saltenis and C. Jensen. Indexing of Moving Objects for Location-Based Services. To Appear in Proc. of IEEE ICDE, 2002.Google Scholar
  23. 23.
    S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing the Positions of Continuously Moving Objects. In Proceedings of the ACMSIGMOD, pages 331–342, May 2000.Google Scholar
  24. 24.
    B. Salzberg and V. Tsotras. Comparison of access methods for time-evolving data. ACM Computing Surveys, 31(2):158–221, 1999.CrossRefGoogle Scholar
  25. 25.
    Y. Tao and D. Papadias. Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In Proc. of the VLDB, 2001.Google Scholar
  26. 26.
    Y. Tao and D. Papadias. Cost models for overlapping and multi-version structures. In Proc. of IEEE ICDE, 2002.Google Scholar
  27. 27.
    Y. Theodoridis and T. Sellis. A model for the prediction of R-tree performance. In Proc. of ACM PODS, pages 161–171, 1996.Google Scholar
  28. 28.
    Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos. Specifications for efficient indexing in spatiotemporal databases. In Proc. of 11th Int. Conf. on SSDBMs, pages 123–132, 1998.Google Scholar
  29. 29.
    T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping linear quadtrees and spatio-temporal query processing. The Computer Journal 43(3), pages 325–343, 2000.zbMATHCrossRefGoogle Scholar
  30. 30.
    P.J. Varman and R.M. Verma. An Efficient Multiversion Access Structure. IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No 3., pages 391–409, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marios Hadjieleftheriou
    • 1
  • George Kollios
    • 2
  • Vassilis J. Tsotras
    • 1
  • Dimitrios Gunopulos
    • 1
  1. 1.University of CaliforniaRiverside
  2. 2.Boston UniversityBoston

Personalised recommendations