Advertisement

Chapter 4 Graphs in Software Visualization

  • Petra Mutzel
  • Peter Eades
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2269)

Abstract

In a recent survey, Koschke [38],[39] (see Chapter on Software Engineering) investigated the perspectives on software visualization of 83 researchers in the areas of software maintenance, reverse engineering, and re-engineering. One ofthe main results was that graphs have been identified as the most often used kind of visualization. Since in these areas graphs are generally computed by automatic analyses, tools are needed for laying them out automatically. Graph visualization and automatic layout are also important issues according to the survey by Bassil and Keller [2] on software visualization.

Keywords

Planar Graph Large Graph Software Visualization Graph Draw Mixed Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Auber. Tulip, a huge graphs visualization software. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 434–435. Springer-Verlag, 2002.Google Scholar
  2. 2.
    S. Bassil and R. K. Keller. Software visualization tools: Survey and analysis. In Proceedings of the Ninth InternationalWorkshop on Program Comprehension (IWPC’2001), pages 7–17, Toronto, ON, 2001. IEEE.Google Scholar
  3. 3.
    V. Batagelj and A. Mrvar. Pajek — program for large network analysis. Connection, 21(2):47–57, 1998.Google Scholar
  4. 4.
    V. Batagelj and A. Mrvar. Pajek — analysis and visualization of large networks. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 474–475. Springer-Verlag, 2002.Google Scholar
  5. 5.
    G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of clustered graphs. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 60–74. Springer-Verlag, 2002.Google Scholar
  6. 6.
    G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing. Prentice Hall, 1999.Google Scholar
  7. 7.
    F. Bertault. A force-directed algorithm that preserves edge crossing properties. In J. Kratochvíl, editor, Graph Drawing (Proc. GD’ 99), volume 1731 of Lecture Notes in Computer Science, pages 351–358. Springer-Verlag, 1999.Google Scholar
  8. 8.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In WADS’ 97, volume 1272 of Lecture Notes in Computer Science, pages 331–344, 1998.Google Scholar
  9. 9.
    F. Brandenburg and M. Himsolt. Graphlet. Available via “http://infosun.fmi.unipassau. de/Graphlet/”.
  10. 10.
    F.J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, 1996.Google Scholar
  11. 11.
    U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML progress report. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, page 497. Springer-Verlag, 2002.Google Scholar
  12. 12.
    S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive giotto: An algorithm for interactive orthogonal graph drawing. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes in Computer Science, pages 303–308. Springer-Verlag, 1998.Google Scholar
  13. 13.
    E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems. Acta Informatica, 1:200–213, 1972.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Cohen. Drawing graphs to convey proximity: an incremental arrangement method. ACM Transactions on Computer-Human Interfaces, 4(11):197–229, 1997.CrossRefGoogle Scholar
  15. 15.
    H.A.D. do Nascimento and P. Eades. User hints for directed graph drawing. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 203–217. Springer-Verlag, 2002.Google Scholar
  16. 16.
    T. Dwyer and P. Eckersley. Wilmascope interactive 3d graph visualisation system. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 440–441. Springer-Verlag, 2002.Google Scholar
  17. 17.
    P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160, 1984.MathSciNetGoogle Scholar
  18. 18.
    Holger Eichelberger and Jürgen Wol. v. Gudenberg. On the Visualization of Java Programs. In Proceedings of DagstuhlSeminar on Software Visualization, 2001.Google Scholar
  19. 19.
    J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz — open source graph drawing tools. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 480–481. Springer-Verlag, 2002.Google Scholar
  20. 20.
    Alexander A. Evstiougov-Babaev. Call Graph and Control Flow Graph Visualization for Developers of Embedded Applications. In Proceedings of DagstuhlSeminar on Software Visualization, 2001.Google Scholar
  21. 21.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes in Computer Science, pages 254–266. Springer-Verlag, 1996.Google Scholar
  22. 22.
    E. Gansner, E. Koutsofios, S. North, and K. Vo. A technique for drawing directed graphs. In IEEE Transactions on Software Engineering, volume 19 (3), pages 214–229, 1993.CrossRefGoogle Scholar
  23. 23.
    E. R. Gansner and S. C. North. Improved force-directed layouts. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 99), volume 1547 of Lecture Notes in Computer Science, pages 364–373. Springer-Verlag, 1998.Google Scholar
  24. 24.
    P. Gayer, M. Goodrich, and S. Kobourov. A fast multi-dimensional algorithm for drawing large graphs. In J. Marks, editor, Graph Drawing (Proc. 2000), volume 1984 of Lecture Notes in Computer Science, pages 211–221. Springer-Verlag, 2001.Google Scholar
  25. 26.
    C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. Automatic layout of uml class diagrams. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science. Springer-Verlag, 2002.Google Scholar
  26. 27.
    C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. In Proceedings of the Ninth AnnualA CM-SIAM Symposium on Discrete Algorithms (SODA’ 2001), pages 246–255, Washington, DC, 2001. ACM Press.Google Scholar
  27. 28.
    Carsten Gutwenger, Michael Jünger, Gunnar Klau, Sebastian Leipert, and Petra Mutzel. Graph Drawing Algorithm Engineering with AGD. In Proceedings of DagstuhlSeminar on Software Visualization, 2001.Google Scholar
  28. 29.
    P. Healy and A. Kuusik. The vertex-exchange graph: a new concept for multilevel crossing minimization. In J. Kratochvíl, editor, Graph Drawing (Proc. GD’ 99), volume 1731 of Lecture Notes in Computer Science, pages 205–216. Springer-Verlag, 1999.Google Scholar
  29. 30.
    P. Healy and N. S. Nikolov. How to layer a directed acyclic graph. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 16–30. Springer-Verlag, 2002.Google Scholar
  30. 31.
    M. Huang and P. Eades. A fully animated interactive system for clustering and navigating huge graphs. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 99), volume 1547 of Lecture Notes in Computer Science, pages 374–383. Springer-Verlag, 1998.Google Scholar
  31. 32.
    A. E. Jacobsen. Interaktion und Lernverfahren beim Zeichnen von Graphen mit Hilfe evolutionärer Algorithmen. Master’s thesis, Institut AIFB, Universität zu Karlsruhe, 76128 Karlsruhe, Germany, 2001.Google Scholar
  32. 33.
    M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications (JGAA) (http://www.cs.brown.edu/publications/jgaa/), 1(1):1–25, 1997.Google Scholar
  33. 34.
    M. Kaufmann and D. Wagner, editors. Drawing graphs: methods and models, volume 2025 of Lecture Notes in Computer Science Tutorial. Springer, 2001.zbMATHGoogle Scholar
  34. 35.
    G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal compaction algorithms. In Graph Drawing (Proc. 2000), LNCS. Springer Verlag, 2001.Google Scholar
  35. 36.
    G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  36. 37.
    G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. P. Cornuejols, editor, Integer Programming and CombinatorialOptimization (IPCO’ 99), Proceedings of the Seventh Conference, volume 1610 of Lecture Notes in Computer Science, pages 304–319. Springer-Verlag, 1999.Google Scholar
  37. 38.
    R. Koschke. Survey on software visualization for software maintenance, reengineering, and reverse engineering. http://www.informatik.uni-stuttgart.de/i./ps/rainer/softviz.
  38. 39.
    Rainer Koschke. Software Visualization for Reverse Engineering. In Proceedings of DagstuhlSeminar on Software Visualization, 2001.Google Scholar
  39. 40.
    D. Lütke-Hüttmann. Knickminimales zeichnen 4-planarer clustergraphen. Master’s thesis, Universität des Saarlandes, Saarbrücken, Germany, 1999.Google Scholar
  40. 41.
    J. Marks, editor. Graph Drawing (Proc. GD 2000), volume 1984of Lecture Notes in Computer Science. Springer-Verlag, 2001.Google Scholar
  41. 42.
    P. Mutzel. An alternative method to crossing minimization on hierarchical graphs. SIAM Journalon Optimization, 11(4):1065–1080, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 43.
    P. Mutzel, M. Jünger, and S. Leipert, editors. Graph Drawing 2001, volume 2265 of Lecture Notes in Computer Science. Springer-Verlag, 2002.zbMATHGoogle Scholar
  43. 44.
    P. Mutzel and R. Weiskircher. Bend minimization in orthogonal drawings via integer programming, 2001. submitted.Google Scholar
  44. 45.
    S. North and G. Woodhull. On-line hierarchical graph drawing. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 230–244. Springer-Verlag, 2002.Google Scholar
  45. 46.
    H. Purchase. Which aesthetic has the greatest effect on human understanding? In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes in Computer Science, pages 248–261. Springer-Verlag, 1997.Google Scholar
  46. 47.
    A. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual abstraction. In J. Marks, editor, Graph Drawing (Proc. 2000), volume 1984 of Lecture Notes in Computer Science, pages 197–210. Springer-Verlag, 2001.Google Scholar
  47. 48.
    E. M. Reingold and Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223–228, 1981.CrossRefGoogle Scholar
  48. 49.
    K. Ryall. Glide. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 476–477. Springer-Verlag, 2002.Google Scholar
  49. 50.
    K. Sugiyama, editor. Graph drawing and applications for software and knowledge engineers. World Scientific, 2002. to appearGoogle Scholar
  50. 51.
    K. Sugiyama and K. Misue. Visualization of structural information: Automatic drawing of compound digraphs. IEEE Trans. Softw. Eng., 21(4):876–892, 1991.MathSciNetGoogle Scholar
  51. 52.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125, 1981.CrossRefMathSciNetGoogle Scholar
  52. 53.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 54.
    C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In J. Marks, editor, Graph Drawing (Proc. 2000), volume 1984 of Lecture Notes in Computer Science, pages 171–182. Springer, 2001.Google Scholar
  54. 55.
    A. Winter. Exchanging graphs with GXL. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing (Proc. 2001), volume 2265 of Lecture Notes in Computer Science, pages 482–496. Springer-Verlag, 2002.Google Scholar
  55. 56.
    Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of the GXL Graph Exchange Language. In Proceedings of DagstuhlSeminar on Software Visualization, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Petra Mutzel
    • 1
  • Peter Eades
    • 2
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyWienAustria
  2. 2.Basser Department of Computer ScienceUniversity of SydneySydneyAustralia

Personalised recommendations