Data GroundTruth, Complexity, and Evaluation Measures for Color Document Analysis

  • Leon Todoran
  • Marcel Worring
  • Arnold W. M. Smeulders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2423)


Publications on color document image analysis present results on small, non-publicly available datasets.We propose in this paper a well defined and groundtruthed color dataset existing of over 1000 pages, with associated tools for evaluation. The color data groundtruthing and evaluation tools are based on a well defined document model, complexity measures to assess the inherent dificulty of analyzing a page, and well founded evaluation measures. Together they form a suitable basis for evaluating diverse applications in color document analysis.


Ground Truth Complexity Measure Text Line Data GroundTruth Logical Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Bottou, P. Haffner, P.G. Howard, and Y. LeCun. Djvu: Analyzing and compressing scanned documents for internet distribution. In ICDAR’99, Bangalore, India, pages 625–628, 1999.Google Scholar
  2. 2.
    W.Y. Chen and S.Y. Chen. Adaptive page segmentation for color technical journals’ cover images. Image and Vision Computing, 16(3):855–877, 1998.CrossRefGoogle Scholar
  3. 3.
    C. Garcia and X. Apostolidis. Text detection and segmentation in complex color images. In Proceedings of IEEE International Conference on Acoustics, Speecha nd Signal Processing, pages 75–78, Istanbul, 2000.Google Scholar
  4. 4.
    H. Hase, T. Shinokawa, M. Yoneda, M. Sakai, and H. Maruyama. Character string extraction from a color document. In ICDAR’99, pages 75–78, India, 1999.Google Scholar
  5. 5.
    X.S. Hua, L. Wenyin, and H.J. Zhang. Automatic performance evaluation for video text detection. In Proc. of the 6th ICDAR’01, pages 545–550, Seattle, USA, 2001.Google Scholar
  6. 6.
    A.K. Jain and B. Yu. Automatic text location in images and video frames. Pattern Recognition, 31(12):2055–2076, 1998.CrossRefGoogle Scholar
  7. 7.
    J. Kanai, S.V. Rice, T.A. Nartker, and G. Nagy. Automated evaluation of ocr zoning. IEEE Transactions on PAMI, 17(1):86–90, 1995.Google Scholar
  8. 8.
    J. Liang, I.T. Phillips, and R. Haralick. An optimization methodology for document structure extraction on latin character documents. IEEE Transactions on PAMI, 23(7):719–734, 2001.Google Scholar
  9. 9.
    J. Liang, R. Rogers, R. Haralick, and I. Phillips. Uw-isl document image analysis toolbox: An experimental environment. In Proc. of the 4th ICDAR, Ulm, Germany, August 1997., pages 984–988, 1997.Google Scholar
  10. 10.
    S. Mao and T. Kanungo. Empirical performance evaluation methodology and its application to page segmentation algorithms. IEEE Transaction on PAMI, 23(3):242–256, 2001.Google Scholar
  11. 11.
    G. Nagy. Twenty years of document image analysis in PAMI. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(1):38–62, 2000.CrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Perroud, K. Sobottka, H. Bunke, and L. Hall. Text extraction from color documents-clustering approaches in three and four dimensions. In Proceedings of the 6thICD AR’01, pages 937–941, Seattle, USA, 2001.Google Scholar
  13. 13.
    D.S. Ryu, S.M. Kang, and S.W. Lee. Parameter-independent geometric document layout analysis. In Proceedings of the 2000 International Conference on Pattern Recognition ICPR’00., pages 397–400, Barcelona, Spain, 2000.Google Scholar
  14. 14.
    J. Sauvola, S. Haapakoski, H. Kauniskangas, T. Seppanen, M. Pietiklainen, and D. Doermann. A distributed management system for testing document image analysis algorithms. In Proceedings of the 4th ICDAR’97, pages 989–995, Ulm, Germany, 1997.Google Scholar
  15. 15.
    J. Sauvola and H. Kauniskangas. MediaTeam Document Database II. CD-ROM collection of document images, University of Oulu, Finland. http://www.mediateam.oulu../MTDB/index.html.
  16. 16.
    L. Todoran, M. Aiello, C. Monz, and M. Worring. Logical structure detection for hetrogeneous document classes. In Proc. SPIE Vol. 3407, Document Recognition and Retrieval VIII., pages 99–111, San Jose, California, 2001.Google Scholar
  17. 17.
    S. Tsujimoto and H. Asada. Major Components of a Complete Text Reading System. Proceedings of the IEEE, 80(7):1133–1149, 1992.Google Scholar
  18. 18.
    V. Wu, R. Manmatha, and E.M. Riseman. Textfinder: An automatic system to detect and recognize text in images. IEEE Trans. on PAMI, 21(11):1224–1229, 1999.Google Scholar
  19. 19.
    T. Watanabe and T. Sobue. Layout analysis of complex documents. In Proceedings of the 2000 International Conference on Pattern Recognition ICPR’00., pages 447–450, Barcelona, Spain, 2000.Google Scholar
  20. 20.
    B. Yanikoglu and L. Vincent. Pink panther: A complete environment for groundtruthing and benchmarking document page segmentation. Pattern Recognition Letters, 31(9):1191–1204, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Leon Todoran
    • 1
  • Marcel Worring
    • 1
  • Arnold W. M. Smeulders
    • 1
  1. 1.Intelligent Sensory Information SystemsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations