Efficient Revocation Schemes for Secure Multicast

  • Hartono Kurnio
  • Rei Safavi-Naini
  • Huaxiong Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2288)


Multicast communication is the main mode of communication for a wide range of Internet services such as video broadcasting and multi-party teleconferencing where there are multiple recipients. A secure multicast system allows a group initiator (or a centre) to send message over a multicast channel to a dynamically changing group of users. The main challenge in secure multicasting is efficient group key management. We propose new schemes for user revocation that can be used to establish a common key among subgroups of users. The schemes can be used with static or dynamic group initiator and allow temporary and permanent revocation of users. We also give a method of adding authentication to the proposed schemes. We prove security and compare efficiency of the new schemes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Anzai, N. Matsuzaki and T. Matsumoto. A Quick Group Key Distribution Scheme with “Entity Revocation”. Advances in Cryptology-ASIACRYPT’ 99, Lecture Notes in Computer Science 1716, pages 333–347, 1999.Google Scholar
  2. 2.
    C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung. Perfectly Secure Key Distribution for Dynamic Conferences. Advances in Cryptology-CRYPTO’92, Lecture Notes in Computer Science 740, pages 471–486, 1993.Google Scholar
  3. 3.
    M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System. Advances in Cryptology-EUROCRYPT’ 94, Lecture Notes in Computer Science 950, pages 275–286, 1995.CrossRefGoogle Scholar
  4. 4.
    R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas. Issues in Multicast Security: A Taxonomy and Efficient Constructions. Proceedings of INFOCOM’ 99, pages 708–716, 1999.Google Scholar
  5. 5.
    R. Canetti, T. Malkin and K. Nissim. Efficient Communication-Storage Tradeoffs for Multicast Encryption. Advances in Cryptology-EUROCRYPT’ 99, Lecture Notes in Computer Science 1592, pages 459–474, 1999.Google Scholar
  6. 6.
    I. Chang, R. Engel, D. Kandlur, D. Pendarakis and D. Saha. Key Management for Secure Internet Multicast Using Boolean Function minimisation Techniques. Proceedings of INFOCOM’ 99, pages 689–698, 1999.Google Scholar
  7. 7.
    W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Inform. Theory 22, pages 644–654, 1976.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Fiat and M. Naor. Broadcast Encryption. Advances in Cryptology-CRYPTO’ 93, Lecture Notes in Computer Science 773, pages 480–491, 1994.Google Scholar
  9. 9.
    O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. JACM, Vol. 33, No. 4, pages 792–807, 1986.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Y. Kim, A. Perrig and G. Tsudik. Simple and Fault-Tolerance Key Agreement for Dynamic Collaborative Groups. Proceedings of CCS’ 00, pages 235–244, 2000.Google Scholar
  11. 11.
    P. S. Kruus. A Survey of Multicast Security Issues and Architectures. 21st National Information Systems Security Conferences, 1998.Google Scholar
  12. 12.
    P. S. Kruus and J. P. Macker. Techniques and Issues in Multicast Security. MILCOM’ 98, 1998.Google Scholar
  13. 13.
    R. Kumar, S. Rajagopalan and A. Sahai. Coding Constructions for Blacklisting Problems Without Computational Assumptions. Advances in Cryptology-CRYPTO’ 99, Lecture Notes in Computer Science 1666, pages 609–623, 1999.Google Scholar
  14. 14.
    H. Kurnio, R. Safavi-Naini, W. Susilo and H. Wang. Key Management for Secure Multicast with Dynamic Controller. Information Security and Privacy-ACISP 2000, Lecture Notes in Computer Science 1841, pages 178–190, 2000.CrossRefGoogle Scholar
  15. 15.
    D. A. McGrew and A. T. Sherman. Key Establishment in Large Dynamic Groups Using One-Way Function Trees. Manuscript, 1998.Google Scholar
  16. 16.
    K. Nyberg, R.A. Rueppel. Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem. Advances in Cryptology-EUROCRYPT’ 94, Lecture Notes in Computer Science 950, pages 182–193, 1995.CrossRefGoogle Scholar
  17. 17.
    R. Safavi-Naini and H. Wang. New Constructions of secure multicast re-keying schemes using perfect hash families. 7th ACM Conference on Computer and Communication Security, ACM Press, 2000, 228–234.Google Scholar
  18. 18.
    A. Shamir. How to Share a Secret. Communications of the ACM 22, pages 612–613, 1979.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. R. Stinson. On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption. Designs, Codes and Cryptography 12, pages 215–243, 1997.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    D. M. Wallner, E. J. Harder and R. C. Agee. Key Management for Multicast: Issues and Architectures. Internet Draft (draft-wallner-key-arch-01.txt), http://ftp://ftp.ietf.org/internet-drafts/draft-wallner-key-arch-01.txt.
  21. 21.
    C. K. Wong, M. Gouda and S. S. Lam. Secure Group Communication Using Key Graphs. Proceedings of SIGCOMM’ 98, pages 68–79, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hartono Kurnio
    • 1
  • Rei Safavi-Naini
    • 1
  • Huaxiong Wang
    • 1
  1. 1.Centre for Computer Security Research School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations