Crossing-Critical Graphs and Path-Width

  • Petr Hliněný
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)


The crossing number cr(G) of a graph G, is the smallest possible number of edge-crossings in a drawing of G in the plane. A graph G is crossing-critical if cr(G − e) < cr(G) for all edges e of G. G. Salazar conjectured in 1999 that crossing-critical graphs have pathwidth bounded by a function of their crossing number, which roughly means that such graphs are made up of small pieces joined in a linear way on small cut-sets. That conjecture was recently proved by the author [9]. Our paper presents that result together with a brief sketch of proof ideas. The main focus of the paper is on presenting a new construction of crossing-critical graphs, which, in particular, gives a nontrivial lower bound on the path-width. Our construction may be interesting also to other areas concerned with the crossing number.


  1. 1.
    M. Ajtai, V. Chvátal, M.M. Newborn, E. Szemerédi, Crossing-free subgraphs., Theory and practice of combinatorics, 9–12, North-Holland Math. Stud. 60, North-Holland, Amsterdam-New York, 1982.Google Scholar
  2. 2.
    D. Bienstock, N. Robertson, P. Seymour, R. Thomas, Quickly excluding a forest, J. Combin. Theory Ser. B 52 (1991), 274–283.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S.N. Bhatt, F.T. Leighton, A frame for solving VLSI graph layout problems, J. of Computer and Systems Science 28 (1984), 300–343.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall 1999 (ISBN 0-13-301615-3).Google Scholar
  5. 5.
    G. Ding, B. Oporowski, R. Thomas, D. Vertigan, Large four-connected nonplanar graphs, in preparation.Google Scholar
  6. 6.
    M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983), 312–316.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Geelen, B. Richter, G. Salazar, Embedding grids on surfaces, manuscript.Google Scholar
  8. 8.
    L.Y. Glebsky, G. Salazar, The conjecture cr(C m × C n) = (m − 2)n is true for all but finitely n, for each m, submitted.Google Scholar
  9. 9.
    P. Hliněný, Crossing-number critical graphs have bounded path-width, submitted.
  10. 10.
    M. Kochol, Construction of crossing-critical graphs, Discrete Math. 66 (1987), 311–313.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    F.T. Leighton, Complexity Issues in VLSI, M.I.T. Press, Cambridge, 1983.Google Scholar
  12. 12.
    P. Mutzel, T. Ziegler, The Constrained Crossing Minimization Problem, In: Proceedings Graph Drawing’ 99, Štiřýn Castle, Czech Republic, September 1999 (J. Kratochvíl ed.), 175–185; Lecture Notes in Computer Science 1731, Springer Verlag, Berlin 2000 (ISBN 3-540-66904-3).Google Scholar
  13. 13.
    J. Pach, G. Tóth, Which crossing number is it, anyway?, Proc. 39th Foundations of Computer Science (1998), IEEE Press 1999, 617–626.Google Scholar
  14. 14.
    H. Purchase, Which Aesthetics has the Greates Effect on Human Understanding, In: Proceedings Graph Drawing’ 97, Rome, Italy, September 18–20 1997 (G. DiBattista ed.), 248–261; Lecture Notes in Computer Science 1353, Springer Verlag, Berlin 1998 (ISBN 3-540-63938-1).CrossRefGoogle Scholar
  15. 15.
    R.B. Richter, C. Thomassen, Intersections of curve systems and the crossing number of C 5 × C 5, Discrete Comput. Geom. 13 (1995), 149–159.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R.B. Richter, G. Salazar, The crossing number of C 6 ×C n, Australas. J. Combin. 23 (2001), 135–143.MATHMathSciNetGoogle Scholar
  17. 17.
    N. Robertson, P. Seymour, Graph minors I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983), 39–61.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    F. Shahrokhi, I. Vrt’o, On 3-Layer Crossings and Pseudo Arrangements, In: Proceedings Graph Drawing’ 99, Štiřýn Castle, Czech Republic, September 1999 (J. Kratochvíl ed.), 225–231; Lecture Notes in Computer Science 1731, Springer Verlag, Berlin 2000 (ISBN 3-540-66904-3).Google Scholar
  19. 19.
    W.T. Tutte, Toward a theory of crossing numbers, J. Combinatorial Theory 8 (1970), 45–53.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Petr Hliněný
    • 1
    • 2
  1. 1.School of Mathematical and Computing SciencesVictoria UniversityWellingtonNew Zealand
  2. 2.Institute for Theoretical Computer Science (ITI MFF)Charles UniversityPraha 1Czech Republic

Personalised recommendations