An Improved Lower Bound for Crossing Numbers

  • Hristo Djidjev
  • Imrich Vrt’o
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)


The crossing number of a graph G = (V,E), denoted by cr(G), is the smallest number of edge crossings in any drawing of G in the plane. Leighton [14] proved that for any n-vertex graph G of bounded degree, its crossing number satisfies cr(G) + n = Ω(bw2(G)), where bw(G) is the bisection width of G. The lower bound method was extended for graphs of arbitrary vertex degrees to cr\( (G) + \tfrac{1} {{16}}\sum _{\upsilon \in G} d_\upsilon ^2 = \Omega (bw^2 (G))\) in [15],[19], where d ν is the degree of any vertex ν. We improve this bound by showing that the bisection width can be replaced by a larger parameter — the cutwidth of the graph. Our result also yields an upper bound for the path-width of G in term of its crossing number.


  1. 1.
    Bezrukov, S.L.,: Edge Isoperimetric Problems on Graphs. In: Lovàsz, L., Gyarfàs, A., Katona, G.O.H., Recski, A., Székely, L. (eds.): Graph Theory and Combinatorial Biology. Bolyai Soc. Mathematical Studies 7. Akadémia Kiadó, Budapest (1999) 157–197Google Scholar
  2. 2.
    Bezrukov, S., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.-P.: The Congestion of n-Cube Layout on a Rectangular Grid. Discrete Mathematics 213 (2000) 13–19zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cimikowski, R.: Algorithms for the Fixed Linear Crossing Number Problem. Submitted to Discrete Applied MathematicsGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualization of Graphs. Prentice Hall (1999)Google Scholar
  5. 5.
    Even, G., Guha, S., Schieber, B.: Improved Approximations of Crossings in Graph Drawing and VLSILa yout Area. In: 32th Annual Symposium on Theory of Computing. ACM Press (2000) 296–305Google Scholar
  6. 6.
    Faria, L., Herrera de Figuerado, C.M.: On Eggleton and Guy conjectured upper bounds for the crossing number of the n-cube. Mathematica Slovaca 50 (2000) 271–287zbMATHMathSciNetGoogle Scholar
  7. 7.
    Garey, M. R., and Johnson, D. S.: Crossing Number is NP-complete. SIAM J. Algebraic and Discrete Methods 4 (1983) 312–316zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gazit, H., Miller, G.L.: Planar Separators and the Euclidean Norm. In: SIGAL Intl. Symposium on Algorithms. Lecture Notes in Computer Science, Vol. 450. Springer Verlag, Berlin (1990) 338–347Google Scholar
  9. 9.
    Geelen, J. F., Richter, R.B., Salazar, G.: Embedding Graphs on Surfaces. Submitted to J. Combinatorial Theory-BGoogle Scholar
  10. 10.
    Grohe, M.: Computing Crossing Numbers in Quadratic Time. In: 33rd Annual ACM Symposium on Theory of Computing. ACM Press (2001)Google Scholar
  11. 11.
    Hlinění, P.: Crossing-Critical Graphs and Path-Width. In: 9th Intl. Symposium on Graph Drawing. Lecture Notes in Computer Science, Springer Verlag, Berlin (2001)Google Scholar
  12. 12.
    Kinnersley, N.: The Vertex Separation Number of a Graph Equals its Path-Width. Information Processing Letters 142 (1992) 345–350CrossRefMathSciNetGoogle Scholar
  13. 13.
    Liebers, A.: Methods for Planarizing Graphs-a Survey and Annotated Bibliography. J. of Graph Algorithms and Applications 5 (2001) 1–74MathSciNetGoogle Scholar
  14. 14.
    Leighton, F. T.: Complexity Issues in VLSI, M.I.T. Press, Cambridge (1983)Google Scholar
  15. 15.
    Pach, J., Shahrokhi, F., Szegedy, M.: Applications of Crossing Number. Algorithmica 16 (1996) 111–117zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Purchase, H.: Which Aestethic has the Greatest Effect on Human Understanding? In: 5th Intl. Symposium on Draph Drawing. Lecture Notes in Computer Science, Vol. 1353. Springer Verlag, Berlin, (1997) 248–261Google Scholar
  17. 17.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: Crossing Numbers: Bounds and Applications. In: Bárány, I., Boroczky, K. (eds.): Intuitive Geometry. Bolyai Society Mathematical Studies 6. Akadémia Kiadó, Budapest (1997) 179–206Google Scholar
  18. 18.
    Sýkora, O., Vrt’o, I.: On the Crossing Number of the Hypercube and the Cube Connected Cycles. BIT 33 (1993) 232–237zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sýkora, O., Vrt’o, I.: On VLSI Layouts of the Star Graph and Related Networks. Integration, The VLSI Journal 17 (1994) 83–93zbMATHCrossRefGoogle Scholar
  20. 20.
    Wei-Liang Lin, Amir H. Farrahi, A. H., Sarrafzadeh, M.: On the Power of Logic Resynthesis. SIAM J. Computing 29 (2000) 1257–1289zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hristo Djidjev
    • 1
  • Imrich Vrt’o
    • 2
  1. 1.Department of Computer ScienceWarwick UniversityCoventryUK
  2. 2.Department of InformaticsInstitute of MathematicsBratislavaSlovak Republic

Personalised recommendations