Planarity Testing of Graphs on Base of a Spring Model

  • Günter Hotz
  • Steffen Lohse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)

Abstract

It is well known that planar embeddings of 3-connected graphs are uniquely determined up to isomorphyof the induced complex of nodes, edges and faces of the plane or the 2-sphere [1]. Moreover, each of the isomorphyclasses of these embeddings contains a representative that has a convex polygon as outer border and has all edges embedded as straight lines. We fixate the outer polygon of such embeddings and regard each remaining edge e as a spring, its resilience being |e| k (|e| euclidean length of e, k∈IR, 1<k<∞). For 3-connected graphs, exactly one power-balanced embedding for each k exists, and this embedding is planar if and only if the graph with the fixated border polygon has a planar embedding inside that very polygon. For k =1 or k =∞, some faces may be collapsed; we call such embeddings quasi-planar [2]. It is possible to decide the planarity of anygraph embedding in linear time [3]. The motivation for this result was to develop a planaritytest that simultaneouslywith the decision process constructs a concrete planar embedding. This algorithm should work in three steps:

References

  1. 1.
    Hotz, G.: Einbettung von Streckenkomplexen in die Ebene. Math. Annalen 167, 214–223 (1966)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Becker, B., Hotz, G.: On the Optimal Layout of Planar Graphs with Fixed Boundary. SIAM Journal on Computing 16(5), 946–972 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Becker-Groh, U., Hotz, G.: Ein Planaritätstest für planar-konvexe Grapheneinbettungen mit lin. Komplexität. Beiträge zur Algebra u. Geom. 18, 191–200 (1984)Google Scholar
  4. 4.
    Hotz, G., Reichert, A.: Hierarchischer Entwurf komplexer Systeme. Chapter 8 in: Wegener, I. (Ed.): Highlights aus der Informatik. Springer-Verlag (1996)Google Scholar
  5. 5.
    Osthof, H.-G.: Optimale Grapheinbettungen und ihre Anwendungen. Dissertation. Universität des Saarlandes (1990)Google Scholar
  6. 6.
    Fáry, I.: On Straight Line Representing of Planar Graphs. Acta Sci. Math. 11, 229–233 (1948)Google Scholar
  7. 7.
    Schnyder, W.: Embedding Planar Graphs on the Grid. Proc. 1st ACM-SIAM Symp. on Discrete Alg., 138–148 (1990)Google Scholar
  8. 8.
    Mehlhorn, K., Näher, S., Seel, M., Uhrig, C.: The LEDA User Manual (Version 3.7). Max-Planck-Institut für Informatik, Saarbrücken (1999)Google Scholar
  9. 9.
    Lohse, S.: Ein Planaritätstest und Einbettungsverfahren für Graphen. Diplomarbeit. Fachbereich Informatik, Universität des Saarlandes (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Günter Hotz
    • 1
  • Steffen Lohse
    • 1
  1. 1.Universität des Saarlandes — Fachbereich InformatikSaarbrückenGermany

Personalised recommendations