Orthogonal Drawings with Few Layers

  • Therese Biedl
  • John R. Johansen
  • Thomas Shermer
  • David R. Wood
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)

Abstract

In this paper, we study 3-dimensional orthogonal graph drawings. Motivated by the fact that only a limited number of layers is possible in VLSI technology, and also noting that a small number of layers is easier to parse for humans, we study drawings where one dimension is restricted to be very small. We give algorithms to obtain point-drawings with 3 layers and 4 bends per edge, and algorithms to obtain box-drawings with 2 layers and 2 bends per edge. Several other related results are included as well. Our constructions have optimal volume, which we prove by providing lower bounds.

References

  1. 1.
    T. Biedl. 1-bend 3-D orthogonal box-drawings: Two open problems solved. J. Graph Algorithms Appl., 5(3):1–15, 2001.MathSciNetGoogle Scholar
  2. 2.
    T. Biedl, T. Chan, Y. Ganjali, M. Hajiaghayi, and D. R. Wood. Balanced vertexorderings of graphs. Technical Report CS-AAG-2001-01, Basser Department of Computer Science, The University of Sydney, Australia, 2001.Google Scholar
  3. 3.
    T. C. Biedl. Heuristics for 3D-orthogonal graph drawings. In Proc. 4th Twente Workshop on Graphs and Combinatorial Optimization, pages 41–44, June 1995.Google Scholar
  4. 4.
    T. C. Biedl. Three approaches to 3D-orthogonal box-drawings. In Whitesides [24], pages 30–43.Google Scholar
  5. 5.
    T. Biedl and G. Kant A Better Heuristic for Orthogonal Graph Drawings. Comput. Geom. Theory Appl. 9:158–180, 1998.MathSciNetGoogle Scholar
  6. 6.
    T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In R. Burkhard and G. Woeginger, editors, Proc. Algorithms:5th Annual European Symp. (ESA’97), volume 1284 of Lecture Notes in Comput. Sci., pages 37–52. Springer, 1997.Google Scholar
  7. 7.
    T. C. Biedl, T. Shermer, S. Whitesides, and S. Wismath. Bounds for orthogonal 3-D graph drawing. J. Graph Algorithms Appl., 3(4):63–79, 1999.MATHMathSciNetGoogle Scholar
  8. 8.
    T. Biedl, T. Thiele, and D. R. Wood. Three-dimensional orthogonal graph drawing with optimal volume. In Marks [18], pages 284–295.Google Scholar
  9. 9.
    M. Closson, S. Gartshore, J. Johansen, and S. K. Wismath. Fully dynamic 3-dimensional orthogonal graph drawing. J. Graph Algorithms Appl., 5(2):1–34, 2000.MathSciNetGoogle Scholar
  10. 10.
    G. Di Battista, M. Patrignani, and F. Vargiu. A split&push approach to 3D orthogonal drawing. J. Graph Algorithms Appl., 4(3):105–133, 2000.MATHMathSciNetGoogle Scholar
  11. 11.
    P. Eades, C. Stirk, and S. Whitesides. The techniques of Komolgorov and Bardzin for three dimensional orthogonal graph drawings. Inform. Proc. Lett., 60(2):97–103, 1996.Google Scholar
  12. 12.
    P. Eades, A. Symvonis, and S. Whitesides. Two algorithms for three dimensional orthogonal graph drawing. In S. North, editor, Proc. Graph Drawing:Symp. On Graph Drawing (GD’96), volume 1190 of Lecture Notes in Comput. Sci., pages 139–154. Springer, 1997.Google Scholar
  13. 13.
    P. Eades, A. Symvonis, and S. Whitesides. Three dimensional orthogonal graph drawing algorithms. Discrete Applied Math., 103:55–87, 2000.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Hagihara, N. Tokura, and N. Suzuki. Graph embedding on a three-dimensional model. Systems-Comput.-Controls, 14(6):58–66, 1983.MathSciNetGoogle Scholar
  15. 15.
    A. N. Kolmogorov and Ya. M. Barzdin. On the realization of nets in 3-dimensional space. Problems in Cybernetics, 8:261–268, March 1967.Google Scholar
  16. 16.
    A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs. Combinatorica 8 (1988), 261–277.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Y. S. Lynn, A. Symvonis, and D. R. Wood. Refinement of three-dimensional orthogonal graph drawings. In Marks [18], pages 308–320.Google Scholar
  18. 18.
    J. Marks, editor. Proc. Graph Drawing:8th International Symp. (GD’00), volume 1984 of Lecture Notes in Comput. Sci. Springer, 2001.Google Scholar
  19. 19.
    A. Papakostas and I. G. Tollis. Algorithms for incremental orthogonal graph drawing in three dimensions. J. Graph Algorithms Appl., 3(4):81–115, 1999.MATHMathSciNetGoogle Scholar
  20. 20.
    A. Papakostas and I. G. Tollis. Efficient orthogonal drawings of high degree graphs. Algorithmica, 26:100–125, 2000.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Peterson. Die Theorie der regulären Graphen. Acta. Math., 15:193–220, 1891.CrossRefMathSciNetGoogle Scholar
  22. 22.
    C. Ware and G. Franck. Viewing a graph in a virtual reality display is three times as good as a 2D diagram. In A. L. Ambler and T. D. Kimura, editors, Proc. IEEE Symp. Visual Languages (VL’94), pages 182–183. IEEE, 1994.Google Scholar
  23. 23.
    C. Ware and G. Franck. Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Trans. Graphics, 15(2):121–140, 1996.CrossRefGoogle Scholar
  24. 24.
    S. Whitesides, editor. Proc. Graph Drawing:6th International Symp. (GD’98), volume 1547 of Lecture Notes in Comput. Sci. Springer, 1998.Google Scholar
  25. 25.
    D. R. Wood. The DLM algorithm for three-dimensional orthogonal graph drawing in the general position model. Submitted; see Technical Report CS-AAG-2001-04, Basser Department of Computer Science, The University of Sydney, 2001.Google Scholar
  26. 26.
    D. R. Wood. Minimising the number of bends and volume in three-dimensional orthogonal graph drawings with a diagonal vertex layout. Submitted; see Technical Report CS-AAG-2001-03, Basser Department of Computer Science, The University of Sydney, 2001.Google Scholar
  27. 27.
    D. R. Wood. An algorithm for three-dimensional orthogonal graph drawing. In Whitesides [24], pages 332–346.Google Scholar
  28. 28.
    D. R. Wood. Multi-dimensional orthogonal graph drawing with small boxes. In J. Kratochvil, editor, Proc. Graph Drawing:7th International Symp. (GD’99), volume 1731 of Lecture Notes in Comput. Sci., pages 311–222. Springer, 1999.Google Scholar
  29. 29.
    D. R. Wood. Bounded degree book embeddings and three-dimensional orthogonal graph drawing. Submitted, 2001.Google Scholar
  30. 30.
    D. R. Wood. Lower bounds for the number of bends in three-dimensional orthogonal graph drawings. In Marks [18], pages 259–271.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Therese Biedl
    • 1
  • John R. Johansen
    • 1
  • Thomas Shermer
    • 2
  • David R. Wood
    • 3
  1. 1.Department of Computer ScienceUniversity of WaterlooCanada
  2. 2.School of Computing ScienceSimon Fraser UniversityCanada
  3. 3.Basser Department of Computer ScienceAustralia

Personalised recommendations