Drawing Graphs Symmetrically in Three Dimensions

  • Seok-Hee Hong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)

Abstract

In this paper, we investigate symmetric graph drawing in three dimensions. We show that the problem of drawing a graph with a maximum number of symmetries in three dimensions is NP-hard. Then we present a polynomial time algorithm for finding maximum number of three dimensional symmetries in planar graphs.

References

  1. 1.
    L. Babai, Automorphism Groups, Isomorphism, and Reconstruction, Chapter 27 of Handbook of Combinatorics, Volume 2, (Ed. Graham, Groetschel and Lovasz), Elsevier Science, 1995.Google Scholar
  2. 2.
    S. Bachl, Isomorphic Subgraphs, Graph Drawing, Lecture Notes in Computer Science 1731, (Ed. J. Kratochvil), pp. 286–296, Springer Verlag, 1999.CrossRefGoogle Scholar
  3. 3.
    G. Di Battista and R. Tamassia, On-Line Maintenance of Triconnected Components with SPQR-Trees, Algorithmica 15, pp. 302–318, 1996.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Chen, H. Lu and H. Yen, On Maximum Symmetric Subgraphs, Graph Drawing, Lecture Notes in Computer Science 1984, (Ed. J. Marks), pp. 372–383, Springer Verlag, 2001.CrossRefGoogle Scholar
  5. 5.
    P. Eades and X. Lin, Spring Algorithms and Symmetry, Theoretical Computer Science, Vol. 240 No.2, pp. 379–405, 2000.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Fraysseix, An Heuristic for Graph Symmetry Detection, Graph Drawing, Lecture Notes in Computer Science 1731, (Ed. J. Kratochvil), pp. 276–285, Springer Verlag, 1999.CrossRefGoogle Scholar
  7. 7.
    S. Hong, P. Eades and S. Lee, Drawing Series Parallel Digraphs Symmetrically, Computational Geometry: Theory and Applicatons Vol. 17, Issue 3–4, pp. 165–188, 2000.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Hong, P. Eades and S. Lee, An Algorithm for Finding Geometric Automorphisms in Planar Graphs, Algorithms and Computation, Lecture Notes in Computer Science 1533, (Ed. Chwa and Ibarra), pp. 277–286, Springer Verlag, 1998.CrossRefGoogle Scholar
  9. 9.
    S. Hong and P. Eades, An Algorithms for Finding Three Dimensional Symmetry in Trees, Graph Drawing, Lecture Notes in Computer Science 1984, (Ed. J. Marks), pp. 360–371, Springer Verlag, 2001.CrossRefGoogle Scholar
  10. 10.
    S. Hong and P. Eades, An Algorithms for Finding Three Dimensional Symmetry in Series Parallel Digraphs, Algorithms and Computation, Lecture Notes in Computer Science 1969, (Ed. D. T. Lee and S. Teng), pp. 266–277, Springer Verlag, 2000.CrossRefGoogle Scholar
  11. 11.
    J. E. Hopcroft and R. E. Tarjan, Isomorphism of Planar Graphs, Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, pp. 131–151, 1972.Google Scholar
  12. 12.
    J. E. Hopcroft and J. K. Wong, Linear Time Algorithm for Isomorphism of Planar Graphs, Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 172–184, 1974.Google Scholar
  13. 13.
    R. J. Lipton, S. C. North and J. S. Sandberg, A Method for Drawing Graphs, In Proc. ACM Symposium on Computational Geometry, pp. 153–160, ACM, 1985.Google Scholar
  14. 14.
    A. Lubiw, Some NP-Complete Problems similar to Graph Isomorphism, SIAM Journal on Computing 10(1), pp. 11–21, 1981.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Mani, Automorphismen von Polyedrischen Graphen, Math. Annalen, 192, pp. 279–303, 1971.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Trees, Congressus Numerantium 64, pp. 159–169, 1988.MathSciNetGoogle Scholar
  17. 17.
    J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Outerplanar Graphs, Discrete Applied Mathematics 39, pp. 13–35, 1992.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Manning, Geometric Symmetry in Graphs, Ph.D. Thesis, Purdue Univ., 1990.Google Scholar
  19. 19.
    G. E. Martin, Transformation Geometry, an Introduction to Symmetry, Springer, New York, 1982.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Seok-Hee Hong
    • 1
  1. 1.Basser Department of Computer ScienceUniversity of SydneyAustralia

Personalised recommendations