Labeling Heuristics for Orthogonal Drawings

  • Carla Binucci
  • Walter Didimo
  • Giuseppe Liotta
  • Maddalena Nonato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)


This paper studies the problem of computing an orthogonal drawing of a graph with labels along the edges. Labels are not allowed to overlap with each other or with edges to which they are not assigned. The optimization goal is area minimization. We provide a unified framework that allows to easily design edge labeling heuristics. By using the framework we implemented and experimentally compared several heuristics. The best performing heuristics have been embedded in the topology-shape- metrics approach.


  1. 1.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum numbr of bends. IEEE Transactions on Computers, 49(8), 2000.Google Scholar
  2. 2.
    R. Castello, R. Milli, and I. Tollis. An algorithmic frameworkfor visualizing statecharts. In Proc. GD’ 00, volume 1984 of LNCS, pages 139–149, 2001.Google Scholar
  3. 3.
    G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and quasi-upward drawings with vertices of arbitrary size. In Proc. GD’ 99, volume 1731 of LNCS, pages 297–310, 2000.Google Scholar
  4. 4.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHCrossRefGoogle Scholar
  5. 5.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom.Theory Appl., 7:303–325, 1997.MATHGoogle Scholar
  6. 6.
    U. Dogrusoz, K. G. Kakoulis, B. Madden, and I. G. Tollis. Edge labeling in the graph layout toolkit. In Proc. GD’ 98, volume 1547 of LNCS, pages 356–363, 1999.Google Scholar
  7. 7.
    T. A. Feo and M. G. C. Resende. Greedy randomized adaptative search procedure. Journalof GlobalOptimization, 6:109–133, 1995.MATHMathSciNetGoogle Scholar
  8. 8.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In Proc. GD’ 95, volume 1027 of LNCS, pages 254–266, 1996.Google Scholar
  9. 9.
    GDToolkit. Graph drawing toolkit. On line.
  10. 10.
    K. G. Kakoulis and I. G. Tollis. On the edge label placement problem. In Proc. GD’ 96, volume 1190 of LNCS, pages 241–256, 1997.Google Scholar
  11. 11.
    K. G. Kakoulis and I. G. Tollis. An algorithm for labeling edges of hierarchical drawings. In Proc. GD’ 97, volume 1353 of LNCS, pages 169–180, 1998.Google Scholar
  12. 12.
    K. G. Kakoulis and I. G. Tollis. On the complexity of the edge label placement problem. Comput. Geom. Theory Appl., 18:1–17, 2001.MATHMathSciNetGoogle Scholar
  13. 13.
    G. W. Klau and P. Mutzel. Combining graph labeling and compaction. In Proc. GD’ 99, volume 1731 of LNCS, pages 27–37, 2000.Google Scholar
  14. 14.
    G. W. Klau and P. Mutzel. Optimal labelling of point features in the slider model. In Proc. COCOON’ 00, volume 1858 of LNCS, pages 340–350, 2000.Google Scholar
  15. 15.
    S. Nakano, T. Nishizeki, T. Tokuyama, and S. Watanabe. Labeling points with rectangles of various shapes. In Proc. GD’ 00, volume 1984 of LNCS, pages 91–102, 2001.Google Scholar
  16. 16.
    M. Patrignani. On the complexity of orthogonal compaction. Comput. Geom. Theory Appl., 19:47–67, 2001.MATHMathSciNetGoogle Scholar
  17. 17.
    T. Strijk and A. Wol.. The map-labeling bibliography. http://www.math-inf.unigreifswald. de/map-labeling/bibliography/.
  18. 18.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Carla Binucci
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Maddalena Nonato
    • 1
  1. 1.Università di PerugiaPerugia

Personalised recommendations