Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size

  • Markus Eiglsperger
  • Michael Kaufmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)


In this paper, we present a new compaction algorithm which computes orthogonal drawings where the size of the vertices is given as input. This is a critical constraint for manypractical applications like UML. The algorithm provides a drastic improvement on previous approaches. It has linear worst case running time and experiments show that it performs veryw ell in practice.


  1. 1.
    G. Di Battista, W. Didimo, Maurizo Patrignani, and Maurizio Pizzonia. Orthogonal and quasi-upward drawings with vertices of prescribed size. In J. Kratochvil, editor, Proceedings of the 7th International Symposium on Graph Drawing (GD’99), volume 1731 of LNCS, pages 297–310. Springer, 1999.Google Scholar
  2. 2.
    T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.Google Scholar
  3. 3.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.Google Scholar
  4. 4.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algortihms. Comput. Geom. Theory Appl., 7:303–325, 1997.MATHGoogle Scholar
  5. 5.
    M. Eiglsperger. Constraints im Kandinsky-Algorithmus. Master’s thesis, Universit ät Tübingen, 1999.Google Scholar
  6. 6.
    U. Fößmeier. Orthogonale Visualisierungstechniken für Graphen. PhD thesis, Eberhard-Karls-Universität zu Tübingen, 1997.Google Scholar
  7. 7.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), volume 1027 of LNCS, pages 254–266. Springer, 1996.Google Scholar
  8. 8.
    U. Fößmeier and M. Kaufmann. Algorithms and area bounds for nonplanar orthogonal drawings. In G. Di Battista, editor, Proceedings of the 5th International Symposium on Graph Drawing (GD’97), volume 1353 of LNCS, pages 134–145. Springer, 1997.Google Scholar
  9. 9.
    K. Klein G. W. Klau and P. Mutzel. An experimental comparison of orthogonal compaction algorithms. In Proceedings of the 8th International Symposium on Graph Drawing (GD’2000), number 1984 in LNCS, pages 37–51, 2001.Google Scholar
  10. 10.
    G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report 98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  11. 11.
    G. W. Klau and P. Mutzel. Combining graph labeling and compaction. In J. Kratochvil, editor, Proceedings of the 7th International Symposium on Graph Drawing (GD’99), number 1731 in LNCS, pages 27–37. Springer, 1999.Google Scholar
  12. 12.
    G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In Integer Programming and Combinatorial Optimization (IPCO’99), number 1610 in LNCS, pages 304–319, 1999.CrossRefGoogle Scholar
  13. 13.
    T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Applicable Theoryin Computer Science. Wiley-Teubner, 1990.Google Scholar
  14. 14.
    M. Patrignani. On the complexityof orthogonal compaction. Computational Geometry: Theory and Applications, 19(1):47–67, 2001.MATHMathSciNetGoogle Scholar
  15. 15.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Eiglsperger
    • 1
  • Michael Kaufmann
    • 1
  1. 1.Universität Tübingen, Wilhelm-Schickard-Institut für InformatikTübingen

Personalised recommendations