One Sided Crossing Minimization Is NP-Hard for Sparse Graphs

  • Xavier Muñoz
  • W. Unger
  • Imrich Vrt’o
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2265)

Abstract

The one sided crossing minimization problem consists of placing the vertices of one part of a bipartite graph on prescribed positions on a straight line and finding the positions of the vertices of the second part on a parallel line and drawing the edges as straight lines such that the number of pairwise edge crossings is minimized. This problem represents the basic building block used for drawing hierarchical graphs aesthetically or producing row-based VLSI layouts. Eades and Wormald [3] showed that the problem is NP-hard for dense graphs. Typical graphs of practical interest are usually very sparse. We prove that the problem remains NP-hard even for forests of 4-stars.

References

  1. 1.
    Demetrescu, C., Finocchi, I.: Removing Cycles for Minimizing Crossings. J. Experimental Algorithmics. To appearGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for Visualization of Graphs. Prentice Hall (1999)Google Scholar
  3. 3.
    Eades, P. Wormald, N.C.: Edge Crossings in Drawing Bipartite Graphs. Algorithmica 11 (1994) 379–403MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eades, P., Whitesides, S.: Drawing Graphs in Two Layers. Theoretical Computer Science 131 (1994) 361–374MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., and Johnson, D.S.: Crossing Number is NP-Complete. SIAM J. Algebraic and Discrete Methods 4 (1983) 312–316MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gavril, F.: Some NP-Complete Problems on Graphs. In: 11th Conf. on Information Sciences and Systems. John Hopkins University Press, Baltimore (1977) 91–95Google Scholar
  7. 7.
    Jünger, M., Mutzel, P.: 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms. J. Graph Algorithms and Algorithms 1 (1999) 11–25Google Scholar
  8. 8.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using Sifting for k-Layer Crossing Minimization. In: 7th Intl. Symp. on Graph Drawing. Lecture Notes in Computer Science, Vol. 1731. Springer-Verlag, Berlin (1999) 217–224Google Scholar
  9. 9.
    Mutzel, P.: Optimization in Leveled Graphs. In: Pardalos, M., Floudas, C.A. (eds.): Encyclopedia of Optimization. Kluwer, Dordrecht (2001)Google Scholar
  10. 10.
    Purchase, H.: Which Aesthetic Has the Greatest Effect on Human Understanding? In: 5th Intl. Symposium on Graph Drawing. Lecture Notes in Computer Science, Vol. 1353. Springer-Verlag, Berlin (1997) 248–261Google Scholar
  11. 11.
    Sechen, C.: VLSI Placement and Global Routing Using Simulated Annealing, Kluwer, Dordrecht (1988)Google Scholar
  12. 12.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: On Bipartite Drawings and the Linear Arrangement Problem. SIAM J. Computing 30 (2000) 1773–1789CrossRefGoogle Scholar
  13. 13.
    Stallmann, M., Brglez, F., Ghosh, D.: Heuristics, Experimental Subjects, and Treatment Evaluation in Bigraph Crossing Minimization. J. Experimental Algorithmics. To appearGoogle Scholar
  14. 14.
    Stanley, R. H.: Enumerative Combinatorics. Wadsworth & Brooks, Monterey (1986)MATHGoogle Scholar
  15. 15.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierarchical System Structures. IEEE Transactions on Systems, Man, and Cybernetics SMC-11 (1981) 109–125CrossRefMathSciNetGoogle Scholar
  16. 16.
    Yamaguchi, A., Sugimoto, A.: An Approximation Algorithm for the Two-Layered Graph Drawing Problem. In: 5th Annual Intl. Conf. on Computing and Combinatorics. Lecture Notes in Computer Science, Vol. 1627. Springer-Verlag, Berlin (1999) 81–91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Xavier Muñoz
    • 1
  • W. Unger
    • 2
  • Imrich Vrt’o
    • 3
  1. 1.Departament de Matemàtica IVUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Lehrstuhl für Informatik IRWTH AachenAachenGermany
  3. 3.Department of InformaticsInstitute of Mathematics, Slovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations