Axiomatising Tree-Interpretable Structures

  • Achim Blumensath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2285)


Generalising the notion of a prefix-recognisable graph to arbitrary relational structures we introduce the class of tree-interpretable structures.We prove that every tree-interpretable structure is finitely axiomatisable in guarded second-order logic with cardinality quantifiers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Barthelmann, On equational simple graphs, Tech. Rep. 9, Universität Mainz, Institut für Informatik, 1997.Google Scholar
  2. 2.
    —, When can an equational simple graph be generated by hyperedge replacement?, LNCS, 1450 (1998), pp. 543–552.Google Scholar
  3. 3.
    A. Blumensath, Automatic Structures, Diploma Thesis, RWTH Aachen, 1999.Google Scholar
  4. 4.
    —, Axiomatising tree-interpretable structures, Tech. Rep. AIB-10-2001, RWTH Aachen, LuFG Mathematische Grundlagen der Informatik, 2001.Google Scholar
  5. 5.
    A. Blumensath and E. Grädel, Automatic structures, in Proc. 15th IEEE Symp. on Logic in Computer Science, 2000, pp. 51–62.Google Scholar
  6. 6.
    O. Burkart, Model checking rationally restricted right closures of recognizable graphs, ENTCS, 9 (1997).Google Scholar
  7. 7.
    D. Caucal, On infinite transition graphs having a decidable monadic theory, LNCS, 1099 (1996), pp. 194–205.Google Scholar
  8. 8.
    B. Courcelle, The monadic second-order logic of graphs II: In finite graphs of bounded width, Math. System Theory, 21 (1989), pp. 187–221.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    —, The monadic second-order logic of graphs IV: Definability properties of equational graphs, Annals of Pure and Applied Logic, 49 (1990), pp. 193–255.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    —, The monadic second-order logic of graphs VII: Graphs as relational structures, Theoretical Computer Science, 101 (1992), pp. 3–33.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    —, Structural properties of context-free sets of graphs generated by vertex replacement, Information and Computation, 116 (1995), pp. 275–293.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    —, Clique-width of countable graphs: A compactness property. unpublished, 2000.Google Scholar
  13. 13.
    Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, Handbook of Recursive Mathematics, North-Holland, 1998.Google Scholar
  14. 14.
    E. Grädel, C. Hirsch, and M. Otto, Back and forth between guarded and modal logics, in Proc. 15th IEEE Symp. on Logic in Computer Science, 2000, pp. 217–228.Google Scholar
  15. 15.
    B. Khoussainov and A. Nerode, Automatic presentations of structures, LNCS, 960 (1995), pp. 367–392.Google Scholar
  16. 16.
    G. Kuper, L. Libkin, and J. Paredaens, Constraint Databases, Springer-Verlag, 2000.Google Scholar
  17. 17.
    O. Kupferman and M. Y. Vardi, An automata-theoretic approach to reasoning about infinite-state systems, LNCS, 1855 (2000), pp. 36–52.Google Scholar
  18. 18.
    C. Morvan, On rational graphs, LNCS, 1784 (1996), pp. 252–266.Google Scholar
  19. 19.
    D. E. Muller and P. E. Schupp, Groups, the theory of ends, and context-free languages, J. of Computer and System Science, 26 (1983), pp. 295–310.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    —, The theory of ends, pushdown automata, and second-order logic, Theoretical Computer Science, 37 (1985), pp. 51–75.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    L. Pélecq, Isomorphismes et automorphismes des graphes context-free, équationnels et automatiques, Ph. D. Thesis, Université Bordeaux I, 1997.Google Scholar
  22. 22.
    G. Sénizergues, Decidability of bisimulation equivalence for equational graphs of finite out-degree, in Proc. 39th Annual Symp. on Foundations of Computer Science, 1998, pp. 120–129.Google Scholar
  23. 23.
    C. Stirling, Decidability of bisimulation equivalence for pushdown processes. unpublished, 2000.Google Scholar
  24. 24.
    W. Thomas, Languages, automata, and logic, in Handbook of Formal Languages, G. Rozenberg and A. Salomaa, eds., vol. 3, Springer, New York, 1997, pp. 389–455.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Achim Blumensath
    • 1
  1. 1.RWTH AachenAachen

Personalised recommendations