Comparing Verboseness for Finite Automata and Turing Machines

  • Till Tantau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2285)

Abstract

A language is called (m,n)-verbose if there exists a Turing machine that enumerates for any n words at most m possibilities for their characteristic string. We compare this notion to (m,n)-fa-verboseness, where instead of a Turing machine a finite automaton is used. Using a new structural diagonalisation method, where finite automata trick Turing machines, we prove that all (m,n)-verbose languages are (h, k)- verbose, iff all (m,n)-fa-verbose languages are (h,k)-fa-verbose. In other words, Turing machines and finite automata behave in exactly the same way with respect to inclusion of verboseness classes. This identical behaviour implies that the Nonspeedup Theorem also holds for finite automata. As an application of the theoretical framework, we prove a lower bound on the number of bits that need to be communicated to finite automata protocol checkers for nonregular protocols.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Austinat, V. Diekert, and U. Hertrampf. A structural propertyof regular frequencyclasses. Theoretical Comput. Sci., to appear 2002.Google Scholar
  2. 2.
    H. Austinat, V. Diekert, U. Hertrampf, and H. Petersen. Regular frequencycomputations. In Proc. RIMS Symposium on Algebraic Systems, Formal Languages and Computation, volume 1166 of RIMS Kokyuroku, pages 35–42, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2000.Google Scholar
  3. 3.
    R. Beigel. Query-limited reducibilities. PhD thesis, Stanford University, Stanford, USA, 1987.Google Scholar
  4. 4.
    R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theoretical Comput. Sci., 84(2):199–223, 1991.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Beigel, W. I. Gasarch, J. Gill, and J. C. Owings. Terse, superterse, and verbose sets. Inform. Computation, 103(1):68–85, 1993.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Inform. Computation, 120(2):304–314, 1995.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Beigel, M. Kummer, and F. Stephan. Quantifying the amount of verboseness. Inform. Computation, 118(1):73–90, 1995.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Cai and L. A. Hemachandra. Enumerative counting is hard. Inform. Computation, 82(1):34–44, 1989.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    W. I. Gasarch and G. A. Martin. Bounded Queries in Recursion Theory. Birkhäuser, 1999.Google Scholar
  10. 10.
    C. G. Jockusch, Jr. Reducibilities in Recursive Function Theory. PhD thesis, MIT, Cambridge, Massachusetts, 1966.Google Scholar
  11. 11.
    E. B. Kinber. Frequencycomputations in finite automata. Cybernetics, 2:179–187, 1976.Google Scholar
  12. 12.
    M. Kummer. A proof of Beigel’s cardinalityconjecture. J. Symbolic Logic, 57(2): 677–681, 1992.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Kummer and F. Stephan. Some aspects of frequencycomputation. Technical Report 21/91, Universität Karlsruhe, Fakultät für Informatik, Germany, 1991.Google Scholar
  14. 14.
    M. Kummer and F. Stephan. Effective search problems. Math. Logic Quarterly, 40:224–236, 1994.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Ogihara. Polynomial-time membership comparable sets. SIAM J. Comput., 24(5):1068–1081, 1995.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Tantau. Combinatorial representations of partial information classes and their truth-table closures. Diploma thesis, Technische Universität Berlin, Germany, 1999. Available at the Electronic Colloquium on Computational Complexity.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Till Tantau
    • 1
  1. 1.Fakultät für Elektrotechnik und InformatikTechnische Universität BerlinBerlinGermany

Personalised recommendations