Advertisement

Perturbing the Regular Topology of Cellular Automata: Implications for the Dynamics

  • Roberto Serra
  • Marco Villani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2493)

Abstract

The topology of Cellular Automata (CA) is that of regular graphs with high clustering coefficients and long characteristic path lengths. The introduction of some long range connections modifies the topology, and it may give rise to small world networks, with high clustering and short path lengths, modifying also the system dynamical properties (attractors, basins of attraction, transient duration). In order to investigate the effects on the dynamics of the introduction of long range connections it is appropriate to keep the number of connections per node constant, while the existing algorithms give rise to nodes with different connectivities. Here we present an algorithm able to re-direct the links without changing the connectivity degree of the nodes. We then analyze the effects of small topological perturbations of a regular lattice upon the system dynamical properties in the case where the transition function is the majority rule; we show that these effects are indeed important and discuss their characteristics.

Keywords

Cellular Automaton Random Graph Cluster Coefficient Cellular Automaton Small World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilbert, N., Troitzsch, K.G.: Simulation for the social scientist. Buckingham (UK): Open University press (1999)Google Scholar
  2. 2.
    Serra, R., Villani, M., Salvemini, A.: Continuous genetic networks. Parallel Computing 27, (2001) 663–683zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kauffman, S.A.: Behavior of randomly constructed nets: binary element nets. In: C.H. Waddington (ed): Towards a theoretical biology. Vol. 3. Edinburgh University Press (1970)Google Scholar
  4. 4.
    Kauffman, S.A.: The origins of order. Oxford University Press (1993)Google Scholar
  5. 5.
    Serra, R., Zanarini, G.: Complex systems and cognitive properties. Springer-Verlag (1990)Google Scholar
  6. 6.
    Serra, R., Villani, M.: Modelling bacterial degradation of organic compounds with genetic networks. J. Theor. Biol. 189(1) (1997) 107–119CrossRefMathSciNetGoogle Scholar
  7. 7.
    Watts, D.J.: Small worlds: the dynamics of networks between order and randomness. Princeton University press (1999)Google Scholar
  8. 8.
    Amaral, L.A.N., Scala, A., Barthelemy, M, Stanley, H.E.: Classes of small world networks. PNAS 97, (2000) 11149–11152CrossRefGoogle Scholar
  9. 9.
    Reka, A., Barabasi, A.L.: Statistical mechanics of complex networks. arXiv:condmat /0106096v1 (2001)Google Scholar
  10. 10.
    Wagner, A., Fell, D.: The small world inside large metabolic networks. Tech. Rep. 00-07-041, Santa Fe Institute (2000)Google Scholar
  11. 11.
    Jeong, H. et al.: The large scale organization of metabolic networks. Nature 407, (2000) 651–654CrossRefGoogle Scholar
  12. 12.
    Watts, D.J, Strogatz, S.H.: Collective dynamics of small world networks. Nature 393 (1998) 440CrossRefGoogle Scholar
  13. 13.
    Barabasi, A.L., Albert, R.: Science 286, (1999) 509CrossRefMathSciNetGoogle Scholar
  14. 14.
    Strogatz, S.H.: Exploring complex networks. Nature 410, (2001) 268–276CrossRefGoogle Scholar
  15. 15.
    Toffoli T., Margolus N.: Cellular automata machines. MIT Press (1987)Google Scholar
  16. 16.
    Mitchell, M.: An introduction to genetic algorithms. MIT Press (1996)Google Scholar
  17. 17.
    Crutchfield, J.P., Mitchell, M.: The evolution of emergent computation. Proc. Natl. Acad.Sci. USA 92 (1995) 10742–10746zbMATHCrossRefGoogle Scholar
  18. 18.
    Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits and Systems 49(1) (2002) 54–62MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Roberto Serra
    • 1
  • Marco Villani
    • 1
  1. 1.Centro Ricerche Ambientali MontecatiniMarina di RavennaRA

Personalised recommendations