Universality Class of Probabilistic Cellular Automata

  • Danuta Makowiec
  • Piotr Gnaciński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2493)


The Ising-like phase transition is considered in probabilistic cellular automata (CA). The nonequilibrium CA with Toom rule are compared to standard equilibrium lattice systems to verify influence of synchronous vs asynchronous updating. It was observed by Marcq et al. [Phys.Rev.E 55(1997) 2606] that the mode of updating separates systems of coupled map lattices into two distinct universality classes. The similar partition holds in case of CA. CA with Toom rule and synchronous updating represent the weak universality class of the Ising model, while Toom CA with asynchronous updating fall into the Ising universality class.


Cellular Automaton Ising Model Critical Exponent Cellular Automaton Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lenz, W.: Phys. Zeitschrift 21 (1920) 613Google Scholar
  2. 2.
    Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena (Oxford University Press, Oxford, 1992)zbMATHGoogle Scholar
  3. 3.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.M., Teller, E.: J. Chem. Phys. 21 (1953) 1087; Glauber, R.J.: J. Math. Phys. 4 (1963) 294; Crutz, M.: Phys. Rev. D 21 (1980) 2308CrossRefGoogle Scholar
  4. 4.
    Matsubara, F., Sato, A., Koseki, O., Shirakura, T.: Phys. Rev. E 78 (1997) 3237Google Scholar
  5. 5.
    Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  6. 6.
    Wolfram, S.: Rev. Mod. Phys. 55(3) (1984) 601CrossRefMathSciNetGoogle Scholar
  7. 7.
    Herrmann, H.J.: J. Stat. Phys. 45 (1986) 145CrossRefGoogle Scholar
  8. 8.
    Stauffer, D.: Int. J. Mod. Phys. C 8 (1997) 1263; Stuffer, D.: Commput. Phys. Commun. 127 (2000) 113Google Scholar
  9. 9.
    Domany, E., Phys. Rev. Lett. 52 (1984) 871; Domany, E., Kinzel, W.: Phys. Rev. Lett. 53 (1984) 311CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bennett, Ch.H., Grinstein, G.: Phys. Rev. Lett. 55 (1985) 657CrossRefGoogle Scholar
  11. 11.
    Lebowitz, J.L., Maes, Ch., Speer, E.R.: J. Stat. Phys. 59 (1990) 117zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Makowiec, D.: Phys. Rev. E 60 (1999) 3787CrossRefGoogle Scholar
  13. 13.
    Grinstein, G.C., Jayaparash, C., Hu, Ye,: Phys. Rev. Lett. 55 (1985) 2527; Gonzaléz-Miranda, J.M., Garrido, P.L., Marro, J., Lebowitz, J.: Phys. Rev. Lett. 59 (1987) 1934; Wang, J-S., Lebowitz, J.: J. Stat. Phys. 51 (1988) 893; Grandi, B.C.S., Figueiredo, W., Phys. Rev. E 53 5484 (1996)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Marcq, D., Chaté, H., Manneville, P.: Phys. Rev. Lett. 77 (1996) 4003; Marcq, D., Chaté, H., Manneville, P.: Phys. Rev. E 55 (1997) 2606CrossRefGoogle Scholar
  15. 15.
    Schmuser, F., Just, W., Kantz, H.: Phys. Rev. E 61 (2000) 3675CrossRefMathSciNetGoogle Scholar
  16. 16.
    Korneta, W.: Phys. Rev. E 64 (2001) (to appear); Szolnoki, A.: Phys. Rev. E 62 (2000) 7466Google Scholar
  17. 17.
    Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov G.L., Prigorov, S. A.: Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. Eds Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (Manchester University Press, Manchester, 1990)Google Scholar
  18. 18.
    Maes, Ch., Vande Velde, K.: Physica A 206 (1994) 587; Maes, Ch., Vande Velde, K.: Commun. Math. Phys. 189 (1997) 277; Makowiec, D.: Phys. Rev. E 55 (1997) 582; Fernandez, R.: Physica A 263 (1999) 117CrossRefGoogle Scholar
  19. 19.
    Munkel, Ch., Heermann, D.W., Adler, J., Gofman, M., Stauffer, D.: Physica A 193 (1993) 540CrossRefGoogle Scholar
  20. 20.
    Binder, K.: Z. Phys. B 43 (1980) 119CrossRefMathSciNetGoogle Scholar
  21. 21.
    Chen, K., Ferrenberg, A.M., Landau, D.P.: Phys. Rev. B 48 (1993) 3249CrossRefGoogle Scholar
  22. 22.
    Zinn-Jistin, J.: Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1989)Google Scholar
  23. 23.
    Suzuki., M.: Prog. Theor. Phys. 51 (1974) 1992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Danuta Makowiec
    • 1
  • Piotr Gnaciński
    • 1
  1. 1.Institute of Theoretical Physics and AstrophysicsGdańsk UniversityGdańskPoland

Personalised recommendations