On Asymptotic Properties of Rough— Set— Theoretic Approximations. Fractal Dimension, Exact Sets, and Rough Inclusion in Potentially Infinite Information Systems

  • Lech Polkowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2475)


We look at asymptotic properties of rough set approximations exploiting them to three-fold purpose viz. to introduce a counterpart of fractal dimension in abstract information systems, to define the notion of an exact set in infinite information system to the result that so defined exact sets form a compact metric Boolean algebra of sets, and to introduce rough inclusion measures for rough mereology for infinitary concepts.


Fractals the Minkowski dimension information systems rough sets A-dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Agarwal, Applications of Generalized Support Vector Machines to Predictive Modelling, in: [7], invited talk.Google Scholar
  2. 2.
    R. B. Altman, K3: Challenges for Knowledge Discovery in Biology, in: [7], keynote talk.Google Scholar
  3. 3.
    C. Carathéodory, Über das lineare Mass von Punktmenge eine Verallgemeinerung des Längenbegriffs, Nach. Gesell. Wiss. Göttingen, 1914, pp. 406–426.Google Scholar
  4. 4.
    K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley and Sons, 1990.Google Scholar
  5. 5.
    F. Hausdorff, Dimension und ausseres Mass, Math.Annalen, 79, 1919, pp. 157–179.CrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Hausdorff, Mengenlehre, Leipzig, 1914.Google Scholar
  7. 7.
    KDD-2001, 7th ACMSIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, San Francisco, August 26–29, 2001;
  8. 8.
    B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension, Flammarion, Paris, 1975.Google Scholar
  9. 9.
    M. Novotný and Z. Pawlak, Partial dependency of attributes, Bull. Polish Acad. Sci. Math., 36 (1988), 453–458.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1991.Google Scholar
  11. 11.
    Z. Pawlak, Rough sets, algebraic and topological approach, Int. J. Inform. Comp. Sciences, 11(1982), pp. 341–366.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    L. Polkowski, On fractal dimension in information systems. Toward exact sets in infinite information systems, Fundamenta Informaticae, 50(3–4) (2002), in print.Google Scholar
  13. 13.
    L. Polkowski, S. Tsumoto, and T. Y. Lin, (eds.), Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, Physica Verlag/Springer Verlag, Heidelberg, 2000.Google Scholar
  14. 14.
    L. Polkowski, Mathematical morphology of rough sets, Bull. Polish Acad. Sci. Math., 41, 1993, pp. 241–273.zbMATHMathSciNetGoogle Scholar
  15. 15.
    R. Ramakrishnan, Mass collaboration and Data Mining, in: [7], keynote talk.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations