Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets

  • Gianpiero Cattaneo
  • Davide Ciucci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2475)


Heyting Wajsberg (HW) algebras are introduced as algebraic models of a logic equipped with two implication connectives, the Heyting one linked to the intuitionistic logic and the Wajsberg one linked to the Lukasiewicz approach to many-valued logic. On the basis of an HW algebra it is possible to obtain a de Morgan Brouwer-Zadeh (BZ) distributive lattice with respect to the partial order induced from the Lukasiewicz implication. Modal-like operators are also defined generating a rough approximation space. It is shown that standard Pawlak approach to rough sets is a model of this structure.


Heyting algebra Wajsberg algebra fuzzy sets rough approximation space rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chellas, B.F..: Modal Logic, An Introduction. Cambridge University Press, Cambridge (1988)Google Scholar
  2. [2]
    Cattaneo, G. Ciucci, D.: BZW algebras for an abstract approach to roughness and fuzziness. Accepted to IPMU 2002 (2002)Google Scholar
  3. [3]
    Cattaneo, G., Dalla Chiara, M.L., Giuntini, R.: Some algebraic structures for many-valued logics. Tatra Mountains Mathematical Publication 15 (1998) 173–196zbMATHMathSciNetGoogle Scholar
  4. [4]
    Cattaneo, G., Giuntini, R., Pilla, R.: BZMVdM and Stonian MV algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets Syst. 108 (1999) 201–222zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Cattaneo, G., Nisticó, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets Syst. 33 (1989) 165–190zbMATHCrossRefGoogle Scholar
  6. [6]
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958) 467–490zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  8. [8]
    Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic, Dordrecht (2000)zbMATHGoogle Scholar
  9. [9]
    Monteiro, A.A..: Sur les algébres de Heyting symétriques. Portugaliae Mathematica 39 (1980) 1–237MathSciNetGoogle Scholar
  10. [10]
    Pagliani, P.: Rough set theory and logic-algebraic structures. In Orlowska, E., ed.: Incomplete Information: Rough Set Analysis. Physica-Verlag, Heidelberg (1998) 109–190Google Scholar
  11. [11]
    Rasiowa, H. Sikorski, R.: The Mathematics of Metamathematics. Third edn. Polish Scientific Publishers, Warsaw (1970)Google Scholar
  12. [12]
    Rescher, N.: Many-valued logic. Mc Graw-Hill, New York (1969)zbMATHGoogle Scholar
  13. [13]
    Surma S.: Logical Works. Polish Academy of Sciences, Wroclaw (1977)Google Scholar
  14. [14]
    Turunen, E.: Mathematics Behind Fuzzy Logic. Physica-Verlag, Heidelberg (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  • Davide Ciucci
    • 1
  1. 1.Dipartimento Di Informatica, Sistemistica e ComunicazioneUniversitá di Milano - BicoccaMilanoItalia

Personalised recommendations