On the efficient computation of higher order maps adfkg(x) using Taylor arithmetic and the Campbell-Baker-Hausdorff formula

  • Klaus Röbenack
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 281)


The computation of ad f k g requires derivatives of f and g up to order k. For small dimensions, the Lie brackets can be computed with computer algebra packages. The application to non-trivial systems is limited due to a burden of symbolic computations involved. The author proposes a method to compute function values of ad f k g using automatic differentiation.


Reverse Mode Symbolic Computation Nonlinear Control System Mathematical Control Theory Computer Algebra Package 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bendtsen and O. Stauning. TADIFF, a flexible C++ package for automatic differentiation. Technical Report IMM-REP-1997-07, TU of Denmark, Dept. of Mathematical Modelling, Lungby, 1997.Google Scholar
  2. 2.
    A. Bensoussan and J. L. Lions, editors. Analysis and Optimization of Systems, Part 2, volume 63 of Lecture Notes in Control and Information Science. Springer, 1984.Google Scholar
  3. 3.
    Y. F. Chang. Automatic solution of differential equations. In D. L. Colton and R. P. Gilbert, editors, Constructive and Computational Methods for Differential and Integral Equations, volume 430 of Lecture Notes in Mathematics, pp. 61–94. Springer Verlag, New York, 1974.CrossRefGoogle Scholar
  4. 4.
    Y. F. Chang. The ATOMCC toolbox. BYTE, 11(4):215–224, 1986.Google Scholar
  5. 5.
    B. Christianson. Reverse accumulation and accurate rounding error estimates for Taylor series. Optimization Methods and Software, 1:81–94, 1992.CrossRefGoogle Scholar
  6. 6.
    G. F. Corliss and Y. F. Chang. Solving ordinary differential equations using Taylor series. ACM Trans. Math. Software, 8:114–144, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J.-M. Cornil and P. Testud. An Introduction to Maple V. Springer, 2001.Google Scholar
  8. 8.
    B. de Jager. The use of symbolic computation in nonlinear control: is it viable? IEEE Trans. on Automatic Control, AC-40(1):84–89, 1995.CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Griewank. ODE solving via automatic differentiation and rational prediction. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1995, volume 344 of Pitman Research Notes in Mathematics Series. Addison-Wesley, 1995.Google Scholar
  10. 10.
    A. Griewank. Evaluating Derivatives — Principles and Techniques of Algorithmic Differentiation, volume 19 of Frontiers in Applied Mathematics. SIAM, 2000.Google Scholar
  11. 11.
    A. Griewank, D. Juedes, and J. Utke. A package for automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software, 22:131–167, 1996.zbMATHCrossRefGoogle Scholar
  12. 12.
    R. Hermann and A. J. Krener. Nonlinear controllability and observability. IEEE Trans. on Automatic Control, AC-22(5):728–740, 1977.CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Isidori. Nonlinear Control Systems: An Introduction. Springer, 3rd edition, 1995.Google Scholar
  14. 14.
    B. Jakubczyk, W. Respondek, and K. Tchon, editors. Geomatric Theory of Nonlinear Control Systems. Technical University of Wroclaw, 1985.Google Scholar
  15. 15.
    D. Juedes and K. Balakrishnan. Generalized neuronal networks, computational differentiation, and evolution. In M. Berz, editor, Proc. of the Second International Workshop, pp. 273–285. SIAM, 1996.Google Scholar
  16. 16.
    A. J. Krener. (ad f,g), (ad f,g) and locally (ad f,g) invariant and controllability distributions. SIAM J. Control and Optimization, 23(4):523–524, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. J. Krener and A. Isidori. Linearization by output injection and nonlinear observers. Systems & Control Letters, 3:47–52, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Kugi, K. Schlacher, and R. Novaki. Symbolic Computation for the Analysis and Sythesis of Nonlinear Control Systems, volume IV of Software for Electrical Engineering, Analysis and Design, pp. 255–264. WIT-Press, 1999.Google Scholar
  19. 19.
    R. Marino and G. Cesareo. Nonlinear control theory and symbolic algebraic manipulation. In Mathematical Theory of Networks and Systems, Proc. of MTNS’83, Beer Sheva, Israel, June 20–24, 1983, volume 58 of Lecture Notes in Control and Information Science, pp. 725–740. Springer, 1984.Google Scholar
  20. 20.
    R. Marino and G. Cesareo. The use of symbolic computation for power system stabilization: An example of computer aided design. In J. L. Lions, editors. Analysis and Optimization of Systems, Part 2, volume 63 of Lecture Notes in Control and Information Science. Springer, 1984 Bensoussan and Lions [2], pp. 598–611.Google Scholar
  21. 21.
    Neil Munro, editor. Symbolic methods in control system analysis and design. IEE, 1999.Google Scholar
  22. 22.
    H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control systems. Springer, 1990.Google Scholar
  23. 23.
    W. Oevel, F. Postel, G. Rüscher, and St. Wehrmeier. Das MuPAD Tutorium. Springer, 1999. Deutsche Ausgabe.Google Scholar
  24. 24.
    K. Röbenack and K. J. Reinschke. A efficient method to compute Lie derivatives and the observability matrix for nonlinear systems. In Proc. 2000 International Symposium on Nonlinear Theory and its Applications (NOLTA’2000), Dresden, Sept. 17–21, volume 2, pp. 625–628, 2000.Google Scholar
  25. 25.
    K. Röbenack and K. J. Reinschke. Reglerentwurf mit Hilfe des Automatischen Differenzierens. Automatisierungstechnik, 48(2):60–66, 2000.CrossRefGoogle Scholar
  26. 26.
    R. Rothfuß, J. Schaffner, and M. Schaffner, and M. Zeitz. Rechnergestützte Analyse und Synthese nichtlinearer Systeme. In S. Engell, editor, Nichtlineare Regelungen: Methoden, Werkzeuge, Anwendungen, volume 1026 of VDI-Berichte, p. 267–291. VDI-Verlag, Düsseldorf, 1993.Google Scholar
  27. 27.
    E. D. Sontag. Mathematical Control Theory, volume 6 of Texts in Applied Mathematics. Springer-Verlag, 2nd edition, 1998.Google Scholar
  28. 28.
    S. Wolfram. The MATHEMATICA Book. Cambridge University Press, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Klaus Röbenack
    • 1
  1. 1.Institut für Regelungs- und SteuerungstheorieTU DresdenDresdenGermany

Personalised recommendations