Configuration Knowledge Representation Using UML/OCL

  • Alexander Felfernig
  • Gerhard Friedrich
  • Dietmar Jannach
  • Markus Zanker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2460)


Today’s economy is exhibiting a growing trend towards highly specialized solution providers cooperatively offering configurable products and services to their customers. In this context, knowledge based configurators which support the configuration of complex products and services, must be enhanced with capabilities of knowledge sharing and distributed configuration problem solving. In this paper we demonstrate how UML/OCL can be used as knowledge representation language supporting standardized knowledge interchange thus enabling cooperative problem solving by different configuration environments. We show the representation of configuration domain specific types of constraints in OCL and present an OCL based knowledge acquisition workbench which enables configuration knowledge base development, maintenance and interchange.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Baar, R. Hähnle, T. Sattler, and T. H. Schmitt. Entwurfsmustergesteuerte Erzeugung von OCL Constraints. In K. Mehrhorn and G. Snelting, editors, Informatik 2000, 30. Jahrestagung der Gesellschaft für Informatik, pages 389–404. Springer-Verlag, 2000.Google Scholar
  2. [2]
    V.E. Barker, D. E. O’Connor, J.D. Bachant, and E. Soloway. Expert systems for configuration at Digital: XCON and beyond. Communications of the ACM, 32(3):298–318, 1989.CrossRefGoogle Scholar
  3. [3]
    T. Berners-Lee. Weaving the Web. Harper Business, 2000.Google Scholar
  4. [4]
    T. Clark, E. Evans, St. Kent, and P. Sammut. The MMF Approach to Engineering Object-Oriented Design Languages. In Workshop on Language Descriptions, Tools and Applications, 2001.Google Scholar
  5. [5]
    A. Evans. Reasoning with UML class diagrams. In Proceedings of the Workshop on Industrial Strength Formal Methods(WIFT’98), Florida, USA, 1998. IEEE Press.Google Scholar
  6. [6]
    A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-Based Diagnosis of Configuration Knowledge Bases. In Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), pages 146–150, Berlin, Germany, 2000.Google Scholar
  7. [7]
    A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Semantic Configuration Web Services in the CAWICOMS project. Proceedings of 1st International Semantic Web Conference, pages 192–205, 2002.Google Scholar
  8. [8]
    D. Fensel, F. vanHarmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. OIL: An Ontology Infrastructure for the SemanticWeb. IEEE Intelligent Systems, 16(2):38–45, 2001.CrossRefGoogle Scholar
  9. [9]
    G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Configuring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems, 13(4):59–68, 1998.CrossRefGoogle Scholar
  10. [10]
    P. Gray, K. Hui, and A. Preece. An Expressive Constraint Language for Semantic Web Applications. In Proceedings of the IJCAI 2001 Workshop on E-Business and the Intelligent Web, pages 46–53, Seattle, WA, 2001.Google Scholar
  11. [11]
    B.N. Grosof. Standardizing XML Rules. In Proceedings of the IJCAI 2001 Workshop on E-Business and the Intelligent Web, pages 2–3, Seattle, WA, 2001.Google Scholar
  12. [12]
    U. Junker. Preference programming for configuration. In Proceedings of Workshop on Configuration (IJCAI’01), Seattle, WA, USA, 2001.Google Scholar
  13. [13]
    E.W. Jüngst M. Heinrich. A resource-based paradigm for the con.guring of technical systems from modular components. In Proceedings of the 7th IEEE Conference on AI applciations (CAIA), pages 257–264, Miami, FL, USA, 1991.Google Scholar
  14. [14]
    D. Mailharro. A classification and constraint-based framework for configuration. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing Journal, Special Issue: Configuration Design, 12(4):383–397, 1998.Google Scholar
  15. [15]
    Sh. McIlraith, T. C. Son, and H. Zeng. Mobilizing the Semantic Web with DAMLEnabledWeb Services. In Proceedings of the IJCAI 2001 Workshop on E-Business and the Intelligent Web, pages 29–39, Seattle, WA, 2001.Google Scholar
  16. [16]
    S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In Proceedings of the National Conference on Artificial Intelligence (AAAI 90), pages 25–32, Boston, MA, 1990.Google Scholar
  17. [17]
    S. Mittal and F. Frayman. Towards a Generic Model of Configuration Tasks. In Proceedings 11th International Joint Conf. on Artificial Intelligence, pages 1395–1401, Detroit, MI, 1989.Google Scholar
  18. [18]
    E. Motta, D. Fensel, M. Gaspari, and V.R. Benjamins. Specifications of Knowledge Components for Reuse. In Proceedings of 11th International Conference on Software Engineering and Knowledge Engineering, pages 36–43, Kaiserslautern, Germany, 1999.Google Scholar
  19. [19]
    J. D. Poole. Model-Driven Architecture: Vision, Standards And Emerging Technologies. In Workshop on Metamodeling and Adaptive Object Models, ECOOP 2001, 2001.Google Scholar
  20. [20]
    M. Richters and M. Gogolla. Validating UML Models and OCL Constraints. In Proceedings of the 3rd International Conference on the Unified Modeling Language (UML’2000), volume 1939, pages 265–277, York, UK, 2000. Springer Lecture Notes in Computer Science.Google Scholar
  21. [21]
    J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998.Google Scholar
  22. [22]
    D. Sabin and R. Weigel. Product Con.guration Frameworks—A Survey. In B. Faltings and E. Freuder, editors, IEEE Intelligent Systems, Special Issue on Configuration, volume 13,4, pages 50–58. IEEE, 1998.Google Scholar
  23. [23]
    M. C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations. In Proceedings of 17th National Conference on Artificial Intelligence (AAAI), pages 917–922, Austin, TX, USA, 2000.Google Scholar
  24. [24]
    F. vanHarmelen, P. F. Patel-Schneider, and I. Horrocks. A Model-Theoretic Semantics for DAML+OIL., March 2001.
  25. [25]
    W3C. Simple Object Access Protocol (SOAP), ver. 1.2., 2001.
  26. [26]
    J. Warmer and A. Kleppe. The Object Constraint Language—Precise Modeling with UML. Addison Wesley Object Technology Series, 1999.Google Scholar
  27. [27]
    M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction problem. IEEE Transactions on Knowledge and Data Engineering, 10(5):673–685, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Gerhard Friedrich
    • 1
  • Dietmar Jannach
    • 1
  • Markus Zanker
    • 1
  1. 1.ProduktionsinformatikInstitut für Wirtschaftsinformatik und AnwendungssystemeKlagenfurtAustria

Personalised recommendations