M/G/1-Type Markov Processes: A Tutorial

  • Alma Riska
  • Evgenia Smirni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2459)

Abstract

M/G/1-type processes are commonly encountered when modeling modern complex computer and communication systems. In this tutorial, we present a detailed survey of existing solution methods for M/G/1-type processes, focusing on the matrix-analytic methodology. From first principles and using simple examples, we derive the fundamental matrix-analytic results and lay out recent advances. Finally, we give an overview of an existing, state-of-the-art software tool for the analysis of M/G/1-type processes.

Keywords

M/G/1-type processes matrix analytic method Markov chains 

References

  1. 1.
    D. A. Bini and B. Meini. Using displacement structure for solving non-skip-free M/G/1 type Markov chains. In A. Alfa and S. Chakravarthy, editors, Advances in Matrix Analytic Methods for Stochastic Models, pages 17–37, Notable Publications Inc. NJ, 1998.Google Scholar
  2. 2.
    D. A. Bini, B. Meini, and V. Ramaswami. Analyzing M/G/1 paradigms through QBDs: the role of the block structure in computing the matrix G. In G. Latouche and P. Taylor, editors, Advances in Matrix-Analytic Methods for Stochastic Models, pages 73–86, Notable Publications Inc. NJ, 2000.Google Scholar
  3. 3.
    L. Breuer. Parameter estimation for a class of BMAPs. In G. Latouche and P. Taylor, editors, Advances in Matrix-Analytic Methods for Stochastic Models, pages 87–97, Notable Publications Inc. NJ, 2000.Google Scholar
  4. 4.
    G. Ciardo, A. Riska, and E. Smirni. An aggregation-based solution method for M/G/1-type processes. In B. Plateau, W. J. Stewart, and M. Silva, editors, Numerical Solution of Markov Chains, pages 21–40. Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999.Google Scholar
  5. 5.
    G. Ciardo and E. Smirni. ETAQA: an efficient technique for the analysis of QBD processes by aggregation. Performance Evaluation, vol. 36—37, pages 71–93, 1999.CrossRefGoogle Scholar
  6. 6.
    J. N. Daige and D. M. Lucantoni. Queueing systems having phase-dependent arrival and service rates. In J. W. Stewart, editor, Numerical Solution of Markov Chains, pages 179–215, Marcel Dekker, New York, 1991.Google Scholar
  7. 7.
    H. R. Gail, S. L. Hantler, and B. A. Taylor. Use of characteristic roots for solving infinite state Markov chains. In W. K. Grassmann, editor, Computational Probability, pages 205–255, Kluwer Academic Publishers, Boston, MA, 2000.Google Scholar
  8. 8.
    W. K. Grassmann and D. A. Stanford. Matrix analytic methods. In W. K. Grassmann, editor, Computational Probability, pages 153–204, Kluwer Academic Publishers, Boston, MA, 2000.Google Scholar
  9. 9.
    D. Green. Lag correlation of approximating departure process for MAP/PH/1 queues. In G. Latouche and P. Taylor, editors, Advances in Matrix-Analytic Methods for Stochastic Models, pages 135–151, Notable Publications Inc. NJ, 2000.Google Scholar
  10. 10.
    B. Haverkort, A. Van Moorsel, and A. Dijkstra. MGMtool: A Performance Analysis Tool Based on Matrix Geometric Methods. In R. Pooley, and J. Hillston, editors, ModellingT echniques and Tools, pages 312–316, Edinburgh University Press, 1993.Google Scholar
  11. 11.
    D. Heyman and A. Reeves. Numerical solutions of linear equations arising in Markov chain models. ORSA Journal on Computing, vol. 1 pages 52–60, 1989.MATHGoogle Scholar
  12. 12.
    D. Heyman and D. Lucantoni. Modeling multiple IP traffic streams with rate limits. In Proceedings of the 17th International Teletraffic Congress, Brazil, Dec. 2001.Google Scholar
  13. 13.
    L. Kleinrock. Queueing systems. Volume I: Theory, Wiley, 1975.Google Scholar
  14. 14.
    G. Latouche. A simple proof for the matrix-geometric theorem. Applied Stochastic Models and Data Analysis, vol. 8, pages 25–29, 1992.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Latouche and G. W. Stewart. Numerical methods for M/G/1 type queues. In G. W. Stewart, editor, Computations with Markov chains, pages 571–581, Kluwer Academic Publishers, Boston, MA, 1995.Google Scholar
  16. 16.
    G. Latouche and V. Ramaswami. Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, 1999.Google Scholar
  17. 17.
    D. M. Lucantoni. The BMAP/G/1 queue: A tutorial. In L. Donatiello and R. Nelson, editors, Models and Techniques for Performance Evaluation of Computer and Communication Systems, pages 330–358. Springer-Verlag, 1993.Google Scholar
  18. 18.
    D. M. Lucantoni. An algorithmic analysis of a communication model with retransmission of flawed messages. Pitman, Boston, 1983.MATHGoogle Scholar
  19. 19.
    B. Meini. An improved FFT-based version of Ramaswami’s formula. Comm. Statist. Stochastic Models, vol. 13, pages 223–238, 1997.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    B. Meini. Solving M/G/1 type Markov chains: Recent advances and applications. Comm. Statist. Stochastic Models, vol. 14(1&2), pages 479–496, 1998.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Meini. Fast algorithms for the numerical solution of structured Markov chains. Ph.D. Thesis, Department of Mathematics, University of Pisa, 1998.Google Scholar
  22. 22.
    C. D. Meyer. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Review, vol. 31(2) pages 240–271, June 1989.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Nelson. Matrix geometric solutions in Markov models: a mathematical tutorial. Research Report RC 16777 (#742931), IBM T.J. Watson Res. Center, Yorktown Heights, NY, Apr. 1991.Google Scholar
  24. 24.
    R. Nelson. Probability, Stochastic Processes, and Queueing Theory. Springer-Verlag, 1995.Google Scholar
  25. 25.
    M. F. Neuts. Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore, MD, 1981.MATHGoogle Scholar
  26. 26.
    M. F. Neuts. Structured stochastic matrices of M/G/1 type and their applications. Marcel Dekker, New York, NY, 1989.MATHGoogle Scholar
  27. 27.
    B. F. Nielsen. Modeling long-range dependent and heavy-tailed phenomena by matrix analytic methods. In Advances in Matrix-Analytic Methods for Stochastic Models, G. Latouche and P. Taylor, editors, Notable Publications, pages 265–278, 2000.Google Scholar
  28. 28.
    V. Ramaswami and G. Latouche. A general class of Markov processes with explicit matrix-geometric solutions. OR Spektrum, vol. 8, pages 209–218, Aug. 1986.Google Scholar
  29. 29.
    V. Ramaswami. A stable recursion for the steady state vector in Markov chains of M/G/1 type. Comm. Statist. Stochastic Models, vol. 4, pages 183–263, 1988.MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    V. Ramaswami and J. L. Wang. A hybrid analysis/simulation for ATM performance with application to quality-of-service of CBR traffic. Telecommunication Systems, vol. 5, pages 25–48, 1996.CrossRefGoogle Scholar
  31. 31.
    A. Riska and E. Smirni. An exact aggregation approach for M/G/1-type Markov chains. In the Proceedings of the ACM International Conference on Measurement and Modelingof Computer Systems (ACM SIGMETRICS’ 02), pages 86–96, Marina Del Rey, CA, 2002.Google Scholar
  32. 32.
    A. Riska and E. Smirni. MAMSolver: a Matrix-analytic methods tools. In T. Field et al. (editors), TOOLS 2002, LNCS 2324, pages 205–211, Springer-Verlag, 2002.Google Scholar
  33. 33.
    A. Riska, M. S. Squillante, S.-Z. Yu, Z. Liu, and L. Zhang. Matrix-analytic analysis of a MAP/PH/1 queue fitted to web server data. 4th Conference on Matrix-Analytic Methods (to appear), Adelaide, Australia, July 2002.Google Scholar
  34. 34.
    H. Schellhaas. On Ramaswami’s algorithm for the computation of the steady state vector in Markov chains of M/G/1 type. Comm. Statist. Stochastic Models, vol. 6, pages 541–550, 1990.MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. S. Squillante. Matrix-analytic methods: Applications, results and software tools. In G. Latouche and P. Taylor, editors, Advances in Matrix-Analytic Methods for Stochastic Models, Notable Publications Inc. NJ, 2000.Google Scholar
  36. 36.
    M. S. Squillante. MAGIC: A computer performance modeling tool based on matrixgeometric techniques. In G. Balbo and G. Serazzi, editors, Computer Performance Evaluation: Modeling Techniques and Tools, North-Holland, Amsterdam, pages 411–425, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alma Riska
    • 1
  • Evgenia Smirni
    • 1
  1. 1.Department of Computer ScienceCollege of William and MaryWilliamsburg

Personalised recommendations