Logical Relations for Monadic Types

  • Jean Goubault-Larrecq
  • Slawomir Lasota
  • David Nowak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2471)

Abstract

Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi’s computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing and distributivity laws for monads. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.

Keywords

logical relations monads semantics typed lambda-calculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.MATHGoogle Scholar
  2. [2]
    M. Alimohamed. A characterization of lambda definability in categorical models of implicit polymorphism. Theoretical Computer Science, 146:5–23, 1995.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Crole and A. Pitts. New foundations for fixpoint computations: Fix-hyperdoctrines and the fix-logic. Information and Computation, 98:171–210, 1992.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Fiore and A. Simpson. Lambda definability with sums via Grothendieck logical relations. In TLCA’99, pages 147–161. Springer Verlag LNCS 1581, 1999.Google Scholar
  5. [5]
    J. Goubault-Larrecq and E. Goubault. On the geometry of intuitionistic S4 proofs. Research Report LSV-01-8, LSV, CNRS & ENS Cachan, 2001. To appear in Homology, Homotopy and Applications.Google Scholar
  6. [6]
    J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. Research Report, LSV, CNRS & ENS Cachan, 2002.Google Scholar
  7. [7]
    F. Honsell and D. Sannella. Pre-logical relations. In CSL’99, pages 546–561. Springer Verlag LNCS 1683, 1999.Google Scholar
  8. [8]
    C. Jones. Probabilistic Non-Determinism. PhD thesis, University of Edinburgh, 1990. Technical Report ECS-LFCS-90-105.Google Scholar
  9. [9]
    A. Jung and J. Tiuryn. A new characterization of lambda definability. In TLCA’93, pages 245–257. Springer Verlag LNCS 664, 1993.Google Scholar
  10. [10]
    K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1–28, 1991.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Lazić and D. Nowak. A unifying approach to data-independence. In CON-CUR’2000, pages 581–595. Springer Verlag LNCS 1877, 2000.Google Scholar
  12. [12]
    Q. Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In MFPS’91, pages 1–40. Springer-Verlag LNCS 598, 1992.Google Scholar
  13. [13]
    J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.Google Scholar
  14. [14]
    J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In CSL’92, pages 352–378. Springer Verlag LNCS 702, 1993.Google Scholar
  15. [15]
    E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, LFCS, Department of Computer Science, University of Edinburgh, 1990.Google Scholar
  16. [16]
    E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92, 1991.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Pitts and I. Stark. Observable properties of higher order functions that dynamically create local names, or: What’s new? In MFCS’93, pages 122–141. Springer-Verlag LNCS 711, 1993.Google Scholar
  18. [18]
    G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax logical relations. In ICALP’2000, pages 85–102. Springer Verlag LNCS 1853, 2000.Google Scholar
  19. [19]
    G.D. Plotkin. Lambda-definability in the full type hierarchy. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 363–373. Academic Press, 1980.Google Scholar
  20. [20]
    N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions. In POPL’02, pages 154–165, 2002.Google Scholar
  21. [21]
    J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP’83, pages 513–523. North-Holland, 1983.Google Scholar
  22. [22]
    J. Rutten. Relators and metric bisimulations. In CMCS’98, volume 11 of Electronic Notes in Theoretical Computer Science, pages 1–7. Elsevier Science, 1998.Google Scholar
  23. [23]
    I. Stark. Names, equations, relations: Practical ways to reason about new. Fundamenta Informaticae, 33(4):369–396, April 1998.Google Scholar
  24. au][24]
    R. Statman. Logical relations and the typed λ-calculus. Information and Control, 65(2–3):85–97, 1985.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free University, Amsterdam, June 1996.Google Scholar
  26. [26]
    P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461–493, 1992.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jean Goubault-Larrecq
    • 1
  • Slawomir Lasota
    • 1
    • 2
  • David Nowak
    • 1
  1. 1.LSV, CNRS & ENSCachanFrance
  2. 2.Institute of InformaticsWarsaw UniversityPoland

Personalised recommendations