Advertisement

Validity Limits of the FJO Thermogravitational Column Theory

  • Javier Valencia
  • Mohamed Mounir Bou-Ali
  • Oscar Ecenarro
  • José Antonio Madariaga
  • Carlos María Santamaría
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 584)

Abstract

We have solved numerically in the formulation vorticity-stream function the equations that govern the separation process in a thermogravitational cell. The numerical values for the steady separation have been compared with the ones given by the Furry, Jones and Onsager theory for different values of the relevant parameters, namely the Grashof and Schmidt numbers and the aspect-ratio A. The obtained results show that with the exception of small regions near the cell ends where the vertical concentration gradient increases considerably, the FJO theory is accurate by more than 1% in the range Gr Sc ≲ 1000 A. Therefore, inside this range the standard formulation can be used with confidence to determine the Soret coefficient from steady separation measurements in a thermogravitational cell.

Keywords

Rayleigh Number Liquid Mixture Schmidt Number Validity Limit Buoyancy Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Clusius, G. Dickel: Naturwissenschaften 26, 456 (1938)CrossRefGoogle Scholar
  2. 2.
    W. H. Furry, R. C. Jones, L. Onsager: Phys. Rev. 55, 1083 (1939)MATHCrossRefADSGoogle Scholar
  3. 3.
    R.C. Jones, W. H. Furry: Rev. Mod. Phys. 18, 151 (1946)CrossRefADSGoogle Scholar
  4. 4.
    J. M. Savirón, M. A. Hidalgo, J. C. Yarza, D. González: J. Phys. A 4, 101 (1971)CrossRefADSGoogle Scholar
  5. 5.
    J. M. Savirón, C. M. Santamaría, J. A. Carrión, J. C. Yarza: J. Chem. Phys. 63, 5318 (1975)CrossRefADSGoogle Scholar
  6. 6.
    C. M. Santamaría, J. M. Savirón, J. C. Yarza: J. Chem. Phys. 3, 1095 (1976)CrossRefADSGoogle Scholar
  7. 7.
    W. M. Rutherford: J. Chem. Phys. 58, 1613 (1973)CrossRefADSGoogle Scholar
  8. 8.
    W. M. Rutherford: J. Chem. Phys. 59, 6061 (1973)CrossRefADSGoogle Scholar
  9. 9.
    H. J. V. Tyrrell: Diffusion and Heat Flow in Liquids (Butterworths, London, 1961)Google Scholar
  10. 10.
    F. H. Horne, R. J. Bearman: J. Chem. Phys. 46, 4128 (1967)CrossRefADSGoogle Scholar
  11. 11.
    F. H. Horne, R. J. Bearman: J. Chem. Phys. 49, 2457 (1968)CrossRefADSGoogle Scholar
  12. 12.
    D. J. Stanford, A. Beyerlein: J. Chem. Phys. 58, 4338 (1973)CrossRefADSGoogle Scholar
  13. 13.
    O. Ecenarro, J. A. Madariaga, J. Navarro, C. M. Santamaría, J. A. Carrión, J. M. Savirón: J. Phys., Condens. Matter 2, 2289 (1990)CrossRefADSGoogle Scholar
  14. 14.
    O. Ecenarro, J. A. Madariaga, J. Navarro, C. M. Santamaría, J. A. Carrión, J. M. Savirón: Macromolecules 27, 4968 (1994)CrossRefADSGoogle Scholar
  15. 15.
    M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría, J. J. Valencia: J. Phys., Condens. Matter 10, 3321 (1998)CrossRefADSGoogle Scholar
  16. 16.
    M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría, J. J. Valencia: J. Non-Equilib. Thermodyn. 24, 228 (1999)MATHCrossRefADSGoogle Scholar
  17. 17.
    M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría, J. J. Valencia: Phys. Rev. E 59, 1250 (1999)CrossRefADSGoogle Scholar
  18. 18.
    M. M. Bou-Ali, O. Ecenarro, J. A. Madariaga, C. M. Santamaría, J. J. Valencia: Phys. Rev. E 62, 1420 (2000)CrossRefADSGoogle Scholar
  19. 19.
    S. R. DeGroot, W. Hoogenstraaten, C. J. Gorter: Physica 9, 923 (1942)CrossRefADSGoogle Scholar
  20. 20.
    J. L. Navarro, J. A. Madariaga, J. M. Savirón: J. Phys. A, Math. Gen. 15, 1683 (1982)CrossRefADSMATHGoogle Scholar
  21. 21.
    O. Ecenarro, J. A. Madariaga, C. M. Santamaría, M. M. Bou-Ali, J. Valencia: Entropie 198/199, 71 (1996)Google Scholar
  22. 22.
    O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamaría, J. A. Carrión, J. M. Savirón: J. Phys., Condens. Matter 5, 2289 (1993)CrossRefADSGoogle Scholar
  23. 23.
    J. L. Navarro, J. A. Madariaga, J. M. Savirón: J. Phys. Soc. Japan 52, 478 (1983)CrossRefADSGoogle Scholar
  24. 24.
    O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamaría, J. A. Carrión, J. M. Savirón: J. Phys., Condens. Matter 2, 2289 (1990)CrossRefADSGoogle Scholar
  25. 25.
    K. J. Zhang, M. E. Briggs, R. W. Gammon, J. V. Sengers: J. Chem. Phys. 104, 6881 (1996)CrossRefADSGoogle Scholar
  26. 26.
    W. Köhler, B. Müller: J. Chem. Phys. 103, 4367 (1995)CrossRefADSGoogle Scholar
  27. 27.
    R. A. Wooding: J. Fluid Mech. 7, 501 (1960)MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    G. Farsang, H. J. V. Tyrrell: J. Chem. Soc. A, 1839 (1969)Google Scholar
  29. 29.
    P. J. Roache: Fundamentals of Computational Fluid Dynamics, (Hermosa Publishers, Albuquerque (N.M., USA 1998))Google Scholar
  30. 30.
    G. Chavepeyer, J. K. Platten: Entropie 198/199, 10 (1996)Google Scholar
  31. 31.
    G. Chavepeyer, J. K. Platten: Entropie 198/199, 25 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Javier Valencia
    • 1
    • 2
  • Mohamed Mounir Bou-Ali
    • 1
    • 2
  • Oscar Ecenarro
    • 1
  • José Antonio Madariaga
    • 1
  • Carlos María Santamaría
    • 1
  1. 1.Departamento de Física Aplicada IIUniversidad del País VascoBilbaoSpain
  2. 2.Departamento de Ingeniería Mecánica, Energética y de MaterialesUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations