Stochastic k-testable Tree Languages and Applications

  • Juan Ramón Rico-Juan
  • Jorge Calera-Rubio
  • Rafael C. Carrasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2484)


In this paper, we describe a generalization for tree stochastic languages of the k-gram models. These models are based on the k-testable class, a subclass of the languages recognizable by ascending tree automata. One of the advantages of this approach is that the probabilistic model can be updated in an incremental fashion. Another feature is that backing-off schemes can be defined. As an illustration of their applicability, they have been used to compress tree data files at a better rate than string-based methods.


tree grammars stochastic models backing-off data compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer Lai, and Robert L. Mercer. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.Google Scholar
  2. [2]
    Rafael C. Carrasco, Mikel L. Forcada, M. Ángeles Valdés-Muñoz, and Ramón P. Neco. Stable encoding of finite-state machines in discrete-time recurrent neural nets with sigmoid units. Neural Computation, 12(9):2129–2174, 2000.CrossRefGoogle Scholar
  3. [3]
    Eugene Charniak. Statistical Language Learning. MIT Press, 1993.Google Scholar
  4. [4]
    R. Chaudhuri, S. Pham, and O.N. Garcia. Solution of an open problem on probabilistic grammars. IEEE Transactions on Computers, 32(8):758–750, 1983.CrossRefGoogle Scholar
  5. [5]
    K. L. Chung. Markov Chains with Stationary Transition Probabilities. Springer, Berlin, 2 edition, 1967.zbMATHGoogle Scholar
  6. [6]
    John G. Cleary and Ian H. Witten. Data compression using adaptive coding and partial string matching. IEEE Transactions on Communicaton, 32(4):396–402, 1984.CrossRefGoogle Scholar
  7. [7]
    Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. John Wiley & Sons, New York, NY, USA, 1991.zbMATHGoogle Scholar
  8. [8]
    Pedro García. Learning k-testable tree sets from positive data. Technical Report DSIC-ii-1993-46, DSIC, Universidad Politécnica de Valencia, 1993.Google Scholar
  9. [9]
    Pedro García and Enrique Vidal. Inference of k-testable languages in the strict sense and application to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):920–925, sep 1990.Google Scholar
  10. [10]
    Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press, Cambridge, Massachusetts, 1998.Google Scholar
  11. [11]
    T. Knuutila and M. Steinby. The inference of tree languages from finite samples: an algebraic approach. Theoretical Computer Science, 129:337–367, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Timo Knuutila. Inference of k-testable tree languages. In H. Bunke, editor, Advances in Structural and Syntactic Pattern Recognition (Proc. Intl. Workshop on Structural and Syntactic Pattern Recognition, Bern, Switzerland). World Scientific, aug 1993.Google Scholar
  13. [13]
    Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of english: the penn treebank. Computational Linguistics, 19:313–330, 1993.Google Scholar
  14. [14]
    H. Ney, U. Essen, and R. Kneser. On the estimation of small probabilities by leaving-one-out. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(12):1202–1212, 1995.CrossRefGoogle Scholar
  15. [15]
    Maurice Nivat and Andreas Podelski. Minimal ascending and descending tree automata. SIAM Journal on Computing, 26(1):39–58, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.R. Rico-Juan, J. Calera-Rubio, and R.C. Carrasco. Stochastic k-testable tree languages and applications., 2002.
  17. [17]
    G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages Springer, 1997.Google Scholar
  18. [18]
    Frank Rubin. Experiments in text file compression. Communications of the ACM, 19(11):617–623, 1976.CrossRefGoogle Scholar
  19. [19]
    Yasubumi Sakakibara. Efficient learning of context-free grammars from positive structural examples. Information and Computation, 97(1):23–60, March 1992.Google Scholar
  20. [20]
    J.A. Sánchez and J.M. Benedí. Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9):1052–1055, 1997.CrossRefGoogle Scholar
  21. [21]
    Andreas Stolcke. An efficient context-free parsing algorithm that computes prefix probabilities. Computational Linguistics, 21(2): 165–201, 1995.MathSciNetGoogle Scholar
  22. [22]
    I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kauffman Publishing, San Francisco, 2nd edition, 1999.Google Scholar
  23. [23]
    I. H. Witten, R.M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Communications of the ACM, 30(6):520–540, 1987.CrossRefGoogle Scholar
  24. [24]
    Takashi Yokomori. On polynomial-time learnability in the limit of strictly deterministic automata. Machine Learning, 19(2):153–179, 1995.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Juan Ramón Rico-Juan
    • 1
  • Jorge Calera-Rubio
    • 1
  • Rafael C. Carrasco
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat d’AlacantAlacantSpain

Personalised recommendations