In-vivo Strain and Stress Estimation of the Left Ventricle from MRI Images

  • Zhenhua Hu
  • Dimitris Metaxas
  • Leon Axel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2488)

Abstract

Little information is known about in-vivo heart strain and stress distribution. In this paper, we present a novel statistical model to estimate the in-vivo material properties and strain and stress distribution in the left ventricle. The displacements of the heart wall are reconstructed in previous work of our group by using MRI-SPAMM tagging technique and deformable model. Based on the reconstructed displacements, we developed the statistical model to estimate strain and stress by using EM algorithm. Two normal hearts and two hearts with right-ventricular hypertrophy are studied. We find noticeable differences in the strain and stress estimated for normal and abnormal hearts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Glass, P. Hunter, A. McCulloch. Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. Springer-Verlag, 1991.Google Scholar
  2. 2.
    K. Costa. The Structural Basis of Three-Dimensional Ventricular Mechanics, Ph.D. Dissertation, University of California, San Diego, CA, 1996.Google Scholar
  3. 3.
    L. Axel, L. Dougherty. Heart wall motion: Improved method of spatial modulation of magnetization for MR imaging. Radiology, 272:349–50, 1989.Google Scholar
  4. 4.
    D. N. Metaxas. Physics-based deformable models: applications to computer vision, graphics, and medical imaging. Kluwer Academic Publishers, Cambridge, 1996.Google Scholar
  5. 5.
    X. Papademetris, A. Sinusas, D. P. Dione, J. S. Duncan. Estimation of 3D left ventricular deformation from echocardiography. Medical Image Analysis, 5:17–28, 2001.CrossRefGoogle Scholar
  6. 6.
    M. Sermesant, Y. Coudiere, H. Delingette, N. Ayache, J. A. Desideri. An Electro-Mechanical Model of the Heart for Cardiac Image Analysis. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’01), 2001.Google Scholar
  7. 7.
    Y. C. Fung. Biomechanics: mechanical properties of living tissues, 2nd ed. Springer-Verlag, 1993.Google Scholar
  8. 8.
    M. W. Hyer. Stress Analysis of Fiber-Reinforced Composite Materials. McGraw-Hill, 1998.Google Scholar
  9. 9.
    A. Amini, Y. Chen, R. W. Curwen, V. Manu, J. Sun. Coupled B-Snake grides and constrained thin-plate splines for analysis of 2D tissue deformations from tagged MRI. IEEE Transaction on Medical Imaging 17(3), 344–356, 1998.CrossRefGoogle Scholar
  10. 10.
    D. D. Streeter Jr., W. T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium: I. Cavity and wall geometry. Circulation Research, 33:639–655, 1973.Google Scholar
  11. 11.
    K. Bathe. Finite element procedures in engineering analysis. Prentice Hall, 1982.Google Scholar
  12. 12.
    O. C. Zienkiewicz, R. L. Taylor. The finite element method. McGraw-Hill, 1989.Google Scholar
  13. 13.
    T. P. Usyk, R. Mazhari, A. D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity, 61, 2000.Google Scholar
  14. 14.
    Haber, D. N. Metaxas, L. Axel. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Medical Image Analysis, 4, 2000.Google Scholar
  15. 15.
    P. J. Bickel, K. A. Doksum. Mathematical statistics: basic ideas and selected topics, Vol. I. Prentice Hall, 2001.Google Scholar
  16. 16.
    Y. C. Fung. A first course in continuum mechanics: for physical and biological engineers and scientists, 3rd ed. Prentice Hall, 1994.Google Scholar
  17. 17.
    J. G. Pinto, Y. C. Fung. Mechanical properties of the heart muscle in the passive state. Journal of Biomechanics, 6:597–616, 1973.CrossRefGoogle Scholar
  18. 18.
    Y. C. Pao, G. K. Nagendra, R. Padiyar, E. L. Ritman. Derivation of myocardial fiber stiffness equation on theory of laminated composite. Journal of Biomechanical Engineering, 102:252–257, 1980.Google Scholar
  19. 19.
    L. L. Demer, F.C.P. Yin. Passive biaxial properties of isolated canine myocardium. Journal of Physiology, 339:615–630, 1983.Google Scholar
  20. 20.
    F.C.P. Yin, R. K. Strumpf, P.H. Chew, S.L. Zeger. Quantification of the mechanical properties of non-contracting myocardium. Journal of Biomechanics, 20:577–589, 1987.CrossRefGoogle Scholar
  21. 21.
    J.D. Humphrey, F.C.P. Yin. Biomechanical experiments on excised myocardium: Theoretical considerations. Journal of Biomechanics, 22:377–383, 1989.CrossRefGoogle Scholar
  22. 22.
    J.D. Humphery, F.C.P. Yin. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. Journal of Biomechanical Engineering, 109:298–304, 1987.CrossRefGoogle Scholar
  23. 23.
    C. Guyton, J. E. Hall. Textbook of Medical Physiology, 10th ed. W.B. Sauders Company, 2000.Google Scholar
  24. 24.
    X. Papademetris. Estimation of 3D left ventricular deformation from medical images using biomechanical models, Ph.D. Dissertation, Yale University, New Haven, CT, May 2000.Google Scholar
  25. 25.
    Haber. Three dimensional motion reconstruction and analysis of the right ventricle from planar tagged MRI. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA, 2000.Google Scholar
  26. 26.
    Haber, D. Metaxas, L. Axel. Motion analysis of the right ventricle from MRI images. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Zhenhua Hu
    • 1
  • Dimitris Metaxas
    • 2
  • Leon Axel
    • 3
  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.The Center of Computational Biomedical, Imaging and ModelingRutgers UniversityNew BrunswickUSA
  3. 3.Department of RadiologyNew York UniversityNew York CityUSA

Personalised recommendations