Simultaneous Relevant Feature Identification and Classification in High-Dimensional Spaces

  • L. R. Grate
  • C. Bhattacharyya
  • M. I. Jordan
  • I. S. Mian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2452)

Abstract

Molecular profiling technologies monitor thousands of transcripts, proteins, metabolites or other species concurrently in biological samples of interest. Given two-class, high-dimensional profiling data, nominal Liknon [4] is a specific implementation of a methodology for performing simultaneous relevant feature identification and classification. It exploits the well-known property that minimizing an l1 norm (via linear programming) yields a sparse hyperplane [15],[26],[2],[8],[17]. This work (i) examines computational, software and practical issues required to realize nominal Liknon, (ii) summarizes results from its application to five real world data sets, (iii) outlines heuristic solutions to problems posed by domain experts when interpreting the results and (iv) defines some future directions of the research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. R. Grate
    • 1
  • C. Bhattacharyya
    • 2
    • 3
  • M. I. Jordan
    • 2
    • 3
  • I. S. Mian
    • 1
  1. 1.Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeley
  2. 2.Department of EECSUniversity of California BerkeleyBerkeley
  3. 3.Department of StatisticsUniversity of California BerkeleyBerkeley

Personalised recommendations