Mark Correlations: Relating Physical Properties to Spatial Distributions

  • Claus Beisbart
  • Martin Kerscher
  • Klaus Mecke
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 600)

Abstract

Mark correlations provide a systematic approach to look at objects both distributed in space and bearing intrinsic information, for instance on physical properties. The interplay of the objects’ properties (marks) with the spatial clustering is of vivid interest for many applications; are, e.g., galaxies with high luminosities more strongly clustered than dim ones? Do neighbored pores in a sandstone have similar sizes? How does the shape of impact craters on a planet depend on the geological surface properties? In this article, we give an introduction into the appropriate mathematical framework to deal with such questions, i.e. the theory of marked point processes. After having clarified the notion of segregation effects, we define universal test quantities applicable to realizations of a marked point processes. We show their power using concrete data sets in analyzing the luminosity-dependence of the galaxy clustering, the alignment of dark matter halos in gravitational N-body simulations, the morphology- and diameter-dependence of the Martian crater distribution and the size correlations of pores in sandstone. In order to understand our data in more detail, we discuss the Boolean depletion model, the random field model and the Cox random field model. The first model describes depletion effects in the distribution of Martian craters and pores in sandstone, whereas the last one accounts at least qualitatively for the observed luminosity-dependence of the galaxy clustering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R. J. (1981): The Geometry of Random Fields (John Wiley & Sons, Chichester)MATHGoogle Scholar
  2. 2.
    Arns, C., M. Knackstedt, W. Pinczewski, K. Mecke (2001): ‘Characterisation of irregular spatial structures by prallel sets’, In pressGoogle Scholar
  3. 3.
    Arns, C., M. Knackstedt, W. Pinczewski, K. Mecke (2001): ‘Euler-poincaré characteristics of classes of disordered media’, Phys. Rev. E 63, p. 31112CrossRefADSGoogle Scholar
  4. 4.
    Baddeley, A. J. (1999): ‘Sampling and censoring’. In: Stochastic Geometry, Likelihood and Computation, ed. by O. Barndorff-Nielsen, W. Kendall, M. van Lieshout, volume 80 of Monographs on Statistics and Applied Probability, chapter 2 (Chapman and Hall, London)Google Scholar
  5. 5.
    Balian, R., R. Schaeffer (1989): ‘Scale-invariant matter distribution in the Universe I. counts in cells’, Astronomy & Astrophysics 220, pp. 1–29ADSMathSciNetGoogle Scholar
  6. 6.
    Barlow, N. G., T. L. Bradley (1990): ‘Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain’, Icarus 87, pp. 156–179CrossRefADSGoogle Scholar
  7. 7.
    Beisbart, C., M. Kerscher (2000): ‘Luminosity-and morphology-dependent clustering of galaxies’, Astrophysical Journal 545, pp. 6–25CrossRefADSGoogle Scholar
  8. 8.
    Benoist, C., A. Cappi, L. Da Costa, S. Maurogordato, F. Bouchet, R. Schaeffer (April 1999): ‘Biasing and high-order statistics from the southern-sky redshift survey’, Astrophysical Journal 514, pp. 563–578CrossRefADSGoogle Scholar
  9. 9.
    Benoist, C., S. Maurogordato, L. Da Costa, A. Cappi, R. Schaeffer (December 1996): ‘Biasing in the galaxy distribution’, Astrophysical Journal 472, p. 452CrossRefADSGoogle Scholar
  10. 10.
    Bertschinger, E. (1998): ‘Simulations of structure formation in the universe’, Ann. Rev. Astron. Astrophys. 36, pp. 599–654CrossRefADSGoogle Scholar
  11. 11.
    Binggeli, B. (1982): ‘The shape and orientation of clusters of galaxies’, Astronomy & Astrophysics 107, pp. 338–349ADSGoogle Scholar
  12. 12.
    Böhringer, H., P. Schuecker, L. Guzzo, C. Collins, W. Voges, S. Schindler, D. Neumann, G. Chincharini, R. Cruddace, A. Edge, H. MacGillivray, P. Shaver (2001): ‘The ROSTAESO flux limited X-ray (REFLEX) galaxy cluster survey I: The construction of the cluster sample’, Astronomy & Astrophysics, p. 826Google Scholar
  13. 13.
    Capobianco, R., E. Renshaw (1998): ‘The autocovariance function of marked point processes: A comparison between two different approaches’, Biom. J. 40, pp. 431–446MATHCrossRefGoogle Scholar
  14. 14.
    Coles, P., B. Jones (January 1991): ‘A lognormal model for the cosmological mass distribution’, MNRAS 248, pp. 1–13ADSGoogle Scholar
  15. 15.
    Coles, P., F. Lucchin (1994): Cosmology: The Origin and Evolution of Cosmic Structure (John Wiley & Sons, Chichester)Google Scholar
  16. 16.
    Cox, D., V. Isham (1980): Point Processes (Chapman and Hall, London)MATHGoogle Scholar
  17. 17.
    Cressie, N. (1991): Statistics for Spatial Data (John Wiley & Sons, Chichester)MATHGoogle Scholar
  18. 18.
    da Costa, L. N., C. N. A. Willmer, P. Pellegrini, O. L. Chaves, C. Rite, M. A. G. Maia, M. J. Geller, D.W. Latham, M. J. Kurtz, J. P. Huchra, M. Ramella, A. P. Fairall, C. Smith, S. Lipari (1998): ‘The Southern Sky Redshift Survey’, AJ 116, pp. 1–7CrossRefADSGoogle Scholar
  19. 19.
    Daley, D. J., D. Vere-Jones (1988): An Introduction to the Theory of Point Processes (Springer, Berlin)MATHGoogle Scholar
  20. 20.
    Diggle, P. J. (1983): Statistical Analysis of Spatial Point Patterns (Academic Press, New York and London)MATHGoogle Scholar
  21. 21.
    Djorgovski, S. (1987): ‘Coherent orientation effects of galaxies and clusters’. In: Nearly Normal Galaxies. From the Planck Time to the Present, ed. by S. M. Faber (Springer, New York), pp. 227–233Google Scholar
  22. 22.
    Faltenbacher, A., S. Gottlöber, M. Kerscher, V. Müller (2002): ‘Correlations in the orientation of galaxy clusters’, submitted to Astronomy & AstrophysicsGoogle Scholar
  23. 23.
    Flannery, B. P., H.W. Deckman, W. G. Roberge, K. L. D’amico (1987): ‘Three-dimensional X-ray microtomography’, Science 237, pp. 1439–1444CrossRefADSGoogle Scholar
  24. 24.
    Fuller, T. M., M.J. West, T. J. Bridges (1999): ‘Alignments of the dominant galaxies in poor clusters’, Astrophysical Journal 519, pp. 22–26CrossRefADSGoogle Scholar
  25. 25.
    Gottlöber, S., M. Kerscher, A.V. Kravtsov, A. Faltenbacher, A. Klypin, V. Müller (2002): ‘Spatial distribution of galactic halos and their merger histories’, Astronomy & Astrophysics 387, pp. 778MATHCrossRefADSGoogle Scholar
  26. 26.
    Gull, S., A. Lasenby, C. Doran (1993): ‘Imaginary numbers are nor real. — the geometric algebra of spacetime’, Found. Phys. 23(9), p. 1175CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Guzzo, L., J. Bartlett, A. Cappi, S. Maurogordato, E. Zucca, G. Zamorani, C. Balkowski, A. Blanchard, V. Cayatte, G. Chincarini, C. Collins, D. Maccagni, H. MacGillivray, R. Merighi, M. Mignoli, D. Proust, M. Ramella, R. Scaramella, G. Stirpe, G. Vettolani (2000): ‘The ESO Slice Project (ESP) galaxy redshift survey. VII. the redshift and real-space correlation functions’, Astronomy & Astrophysics 355, pp. 1–16ADSGoogle Scholar
  28. 28.
    Hamilton, A. J. S. (August 1988): ‘Evidence for biasing in the cfa survey’, Astrophysical Journal 331, pp. L59–L62CrossRefADSGoogle Scholar
  29. 29.
    Heavens, A. F., A. Refregier, C. Heymans (2000): ‘Intrinsic correlation of galaxy shapes: implications for weak lensing measurements’, MNRAS 319, pp. 649–656CrossRefADSGoogle Scholar
  30. 30.
    Hermit, S., B. X. Santiago, O. Lahav, M. A. Strauss, M. Davis, A. Dressler, J. P. Huchra (1996): ‘The two-point correlation function and the morphological segregation in the optical redshift survey’, MNRAS 283, p. 709ADSGoogle Scholar
  31. 31.
    Hestens, D. (1986): New Foundations for Classical Mechanics (D. Reidel Publishing Company, Dordrecht, Holland)Google Scholar
  32. 32.
    Huchra, J. P., M. J. Geller, V. De Lapparent, H. G. Corwin Jr. (1990): ‘The CfA redshift survey — data for the NGP + 30 zone’, Astrophysical Journal Supplement 72, pp. 433–470CrossRefADSGoogle Scholar
  33. 33.
    Isham, V. (1985): ‘Marked point processes and their correlations’. In: Spatial Processes and Spatial Time Series Analysis, ed. by F. Droesbeke (Publications des Facultés universitaires Sain-Louis, Bruxelles)Google Scholar
  34. 34.
    Kerscher, M. (2000): ‘Statistical analysis of large-scale structure in the Universe’. In: Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, ed. by K. R. Mecke, D. Stoyan, Number 554 in Lecture Notes in Physics (Springer, Berlin), astro-ph/9912329Google Scholar
  35. 35.
    Kerscher, M. (2001): ‘Constructing, characterizing and simulating Gaussian and high-order point processes’, Phys. Rev. E 64(5), p. 056109, astro-ph/0102153CrossRefADSGoogle Scholar
  36. 36.
    Klypin, A. A. (2000): ‘Numerical simulations in cosmology i: Methods’, in ‘Lecture at the Summer School “Relativistic Cosmology: Theory and Observations”’, Astro-ph/0005502Google Scholar
  37. 37.
    Lambas, D. G., E. J. Groth, P. Peebles (1988): ‘Statistics of galaxy orientations: Morphology and large-scale structure’, Astronomical Journal 95, pp. 975–984CrossRefADSGoogle Scholar
  38. 38.
    Lasenby, J., A. N. Lasenby, C. J. Doran (2000): ‘A unified mathematical language for physics and engineering in the 21st century’, Phil. Trans. R. Soc. London A 358, pp. 21–39MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Löwen, H. (2000): ‘Fun with hard spheres’. In: Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, ed. by K. R. Mecke, D. Stoyan, Number 554 in Lecture Notes in Physics (Springer, Berlin)Google Scholar
  40. 40.
    Mecke, K. (2000): ‘Additivity, convexity, and beyond: Application of minkowski functionals in statistical physics’. In: Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, ed. by K. R. Mecke, D. Stoyan, Number 554 in Lecture Notes in Physics (Springer, Berlin)Google Scholar
  41. 41.
    Melott, A. L., S. F. Shandarin (1990): ‘Generation of large-scale cosmological structures by gravitational clustering’, Nature 346, pp. 633–635.CrossRefADSGoogle Scholar
  42. 42.
    Møller, J., A. R. Syversveen, R. P. Waagepetersen (1998): ‘Log Gaussian cox processes’, Scand. J. Statist. 25, pp. 451–482MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Ogata, Y., K. Katsura (1988): ‘Likelihood analysis of spatial inhomogeneity for marked point pattersn’, Ann. Inst. Statist. Math. 40, pp. 29–39MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ogata, Y., M. Tanemura (1985): ‘Estimation of interaction potentials of marked spatial point patterns through the maximum likelihood method’, Biometrics 41, pp. 421–433MATHCrossRefGoogle Scholar
  45. 45.
    Ohser, J., D. Stoyan (1981): ‘On the second-order and orientation analysis of planar stationary point processes’, Biom. J. 23, pp. 523–533MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Onuora, L. I., P. A. Thomas (2000): ‘The alignment of clusters using large-scale simulations’, MNRAS 319, pp. 614–618CrossRefADSGoogle Scholar
  47. 47.
    Peebles, P. J. E. (1980): The Large Scale Structure of the Universe (Princeton University Press, Princeton, New Jersey)Google Scholar
  48. 48.
    Peebles, P. J. E. (1993): Principles of Physical Cosmology (Princeton University Press, Princeton, New Jersey)Google Scholar
  49. 49.
    Penttinen, A., D. Stoyan (1989): ‘Statistical analysis for a class of line segment processes’, Scand. J. Statist. 16, pp. 153–168MATHMathSciNetGoogle Scholar
  50. 50.
    Reichert, H., O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, G. Reiter (2000): ‘Observation of five-fold local symmetry in liquid lead’, Nature 408, p. 839CrossRefADSGoogle Scholar
  51. 51.
    Schlather, M. (2001): ‘On the second-order characteristics of marked point processes’, Bernoulli 7(1), pp. 99–107MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Schlather, M. (2002): ‘Characterization of point processes with Gaussian marks independent of locations’, Math. Nachr. AcceptedGoogle Scholar
  53. 53.
    Sok, R. M., M. A. Knackstedt, A. P. Sheppard, W. V. Pinczewski, W. B. Lindquist, A. V. A, L. Paterson (2000): ‘Direct and stochastic generation of network models from tomographic images; effect of topology on two-phase flow properties’. In: Proc. Upscaling Downunder, ed. by L. Paterson, (Kluwer Academic, Dordrecht)Google Scholar
  54. 54.
    Spanne, P., J. Thovert, C. Jacquin, W. Lindquist, K. Jones, P. Adler (1994): ‘Synchrotron computed microtomography of porous media: Topology and transport’, Phys. Rev. Lett. 73, pp. 2001–2004CrossRefADSGoogle Scholar
  55. 55.
    Stoyan, D. (1984): ‘On correlations of marked point processes’, Math. Nachr. 116, pp. 197–207MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Stoyan, D. (2000): ‘Basic ideas of spatial statistics’. In: Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation, ed. by K. R. Mecke, D. Stoyan, Number 554 in Lecture Notes in Physics (Springer, Berlin)Google Scholar
  57. 57.
    Stoyan, D. (2000): ‘Recent applications of point process methods in forestry statistics’, Statistical Sciences 15, pp. 61–78CrossRefMathSciNetGoogle Scholar
  58. 58.
    Stoyan, D., W. S. Kendall, J. Mecke (1995): Stochastic Geometry and its Applications (John Wiley & Sons, Chichester), 2nd editionMATHGoogle Scholar
  59. 59.
    Stoyan, D., H. Stoyan (1985): ‘On one of matérn’s hard-core point process models’, Biom. J. 122, p. 205MATHMathSciNetGoogle Scholar
  60. 60.
    Stoyan, D., H. Stoyan (1994): Fractals, Random Shapes and Point Fields (John Wiley & Sons, Chichester)MATHGoogle Scholar
  61. 61.
    Stoyan, D., O. Wälder (2000): ‘On variograms in point process statistics, ii: Models for markings and ecological interpretation’, Biom. J. 42, pp. 171–187MATHCrossRefGoogle Scholar
  62. 62.
    Struble, M. F., P. Peebles (1985): ‘Erratum: A new application of Binggeli’s test for large-scale alignment of clusters of galaxies’, Astronomical Journal 90, pp. 582–589CrossRefADSGoogle Scholar
  63. 63.
    Struble, M. F., P. Peebles (1986): ‘A new application of binggeli’s test for large-scale alignment of clusters of galaxies’, Astronomical Journal 91, p. 1474CrossRefADSGoogle Scholar
  64. 64.
    Sylos Labini, F., M. Montuori, L. Pietronero (1998): ‘Scale invariance of galaxy clustering’, Physics Rep. 293, pp. 61–226CrossRefADSGoogle Scholar
  65. 65.
    Szapudi, I., G. B. Dalton, G. Efstathiou, A. S. Szalay (1995): ‘Higher order statistics from the APM galaxy survey’, Astrophysical Journal 444, pp. 520–531CrossRefADSGoogle Scholar
  66. 66.
    Szapudi, I., A. S. Szalay (1993): ‘Higher order statistics of the galaxy distribution using generating functions’, Astrophysical Journal 408, pp. 43–56CrossRefADSGoogle Scholar
  67. 67.
    Ulmer, M., S. L.W. McMillan, M. P. Kowalski (1989): ‘Do the major axis of rich clusters of galaxies point toward their neighbors?’, Astrophysical Journal 338, pp. 711–717CrossRefADSGoogle Scholar
  68. 68.
    van Lieshout, M. N. M., A. J. Baddeley (1996): ‘A nonparametric measure of spatial interaction in point patterns’, Statist. Neerlandica 50, pp. 344–361MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    van Lieshout, M. N. M., A. J. Baddeley (1999): ‘Indices of dependence between types in multivariate point patterns’, Scand. J. Statist. 26, pp. 511–532MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Wälder, O., D. Stoyan (1996): ‘On variograms and point process statistics’, Biom. J. 38, pp. 895–905MATHCrossRefGoogle Scholar
  71. 71.
    Wälder, O., D. Stoyan (1997): ‘Models of markings and thinnings of poisson processes’, Statistics 29, pp. 179–202MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Widom, B., J. Rowlinson (1970): ‘New model for the study of liquid-vapor phase transitions’, J. Chem. Phys. 52, pp. 1670–1684CrossRefADSGoogle Scholar
  73. 73.
    Willmer, C., L. N. da Costa, P. Pellegrini (March 1998): ‘Southern sky redshift survey: Clustering of local galaxies’, Astronomical Journal 115, pp. 869–884CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Claus Beisbart
    • 1
  • Martin Kerscher
    • 2
  • Klaus Mecke
    • 3
    • 4
  1. 1.Nuclear & Astrophysics LaboratoryUniversity of OxfordOxfordGreat Britain
  2. 2.Sektion PhysikLudwig-Maximilians-UniversitätMünchenGermany
  3. 3.Max-Planck-Institut für MetallforschungStuttgartGermany
  4. 4.Institut für Theoretische und Angewandte Physik, Fakultät für PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations