Advertisement

The Representation Problem Based on Factoring

  • Marc Fischlin
  • Roger Fischlin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2271)

Abstract

We review the representation problem based on factoring and show that this problem gives rise to alternative solutions to a lot of cryptographic protocols in the literature. And, while the solutions so far usually either rely on the RSA problem or the intractability of factoring integers of a special form (e.g., Blum integers), the solutions here work with the most general factoring assumption. Protocols we discuss include identification schemes secure against parallel attacks, secure signatures, blind signatures and (non-malleable) commitments.

Keywords

Signature Scheme Representation Problem Blind Signature Commitment Scheme Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BFGM01.
    M. Bellare, M. Fischlin, S. Goldwasser and S. Micali: Identification Protocols Secure Against Reset Attacks, Eurocrypt 2001, Lecture Notes in Computer Science, vol. 2045, pp. 495–511, Springer Verlag, 2001.CrossRefGoogle Scholar
  2. BG92.
    M. Bellare and O. Goldreich: On Defining Proofs of Knowledge, Crypto’ 92, Lecture Notes in Computer Science, vol. 740, pp. 390–420, Springer Verlag, 1993.Google Scholar
  3. BR93.
    M. Bellare and P. Rogaway: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols, First ACM Conference on Computer and Communication Security, ACM Press, pp. 62–73, 1993.Google Scholar
  4. B97.
    S. Brands: Rapid Demonstration of Linear Relations Connected by Boolean Operators, Eurocrypt’ 97, Lecture Notes in Computer Science, vol. 1233, pp. 318–333, Springer-Verlag, 1997.Google Scholar
  5. BCC88.
    G. Brassard, D. Chaum and C. CrÉpeau: Minimum Disclosure Proofs of Knowledge, Journal Computing System Science, vol. 37(2), pp. 156–189, 1988.zbMATHCrossRefGoogle Scholar
  6. BV98.
    D. Boneh and R. Venkatesan: Breaking RSA may Not be Equivalent to Factoring, Eurocrypt’ 98, Lecture Notes in Computer Science, vol. 1403, pp. 59–71, Springer Verlag, 1998.CrossRefGoogle Scholar
  7. CKOS01.
    G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith: Efficient And Non-Interactive Non-Malleable Commitment, Eurocrypt 2001, Lecture Notes in Computer Science, vol. 2045, pp. 40–59, Springer Verlag, 2001.CrossRefGoogle Scholar
  8. D95.
    I. DamgÅrd: Practical and Provable Secure Release of a Secret and Exchange of Signature, Journal of Cryptology, vol. 8, pp. 201–222, 1995.zbMATHCrossRefGoogle Scholar
  9. DDN00.
    D. Dolev, C. Dwork and M. Naor: Nonmalleable Cryptography, SIAM Journal on Computing, vol. 30(2), pp. 391–437, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  10. FFS88.
    U. Feige, A. Fiat and A. Shamir: Zero-Knowledge Proofs of Identity, Journal of Cryptology, vol. 1(2), pp. 77–94, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  11. FS86.
    A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identification and Signature Schemes, Crypto’ 86, Lecture Notes in Computer Science, vol. 263, Springer-Verlag, pp. 186–194, 1986.Google Scholar
  12. FS90.
    A. Fiat and A. Shamir: Witness Indistinguishable and Witness Hiding Protocols, Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing (STOC), pp. 416–426, ACM Press, 1990.Google Scholar
  13. FF00.
    M. Fischlin and R. Fischlin: Efficient Non-Malleable Commitment Schemes, Crypto 2000, Lecture Notes in Computer Science, vol. 1880, pp. 414–432, Springer Verlag, 2000.CrossRefGoogle Scholar
  14. GQ88.
    L.C. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessors Minimizing Both Transmission and Memory, Eurocrypt’ 88, Lecture Notes in Computer Science, vol. 330, pp. 123–129, Springer Verlag, 1988.Google Scholar
  15. GMR88.
    S. Goldwasser, S. Micali and R.L. Rivest: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks, SIAM Journal of Computing, vol. 17(2), pp. 281–308, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  16. H99.
    S. Halevi: Efficient Commitment Schemes with Bounded Sender and Unbounded Receiver, Journal of Cryptology, vol. 12(2), pp. 77–90, 1999.zbMATHCrossRefGoogle Scholar
  17. NY90.
    M. Naor and M. Yung: Universal Oneway Hash Functions and Their Cryptographic Applications, Proceedings of the 21st Annual ACM Symposium on the Theory of Computing (STOC), pp. 33–43, ACM Press, 1989.Google Scholar
  18. OS90.
    H. Ong and C.P. Schnorr: Fast Signature Generation with as Fiat-Shamir-Like Scheme, Eurocrypt’ 90, Lecture Notes in Computer Science, vol. 473, pp. 432–440, Springer Verlag, 1991.Google Scholar
  19. OO88.
    K. Ohta and T. Okamoto: A Modification of the Fiat-Shamir Scheme, Crypto’ 88, Lecture Notes in Computer Science, vol. 403, pp. 232–243, Springer Verlag, 1989.Google Scholar
  20. Ok92.
    T. Okamoto: Provable Secure and Practical Identification Schemes and Corresponding Signature Schemes, Crypto’ 92, Lecture Notes in Computer Science, vol. 740, pp. 31–53, Springer Verlag, 1993.Google Scholar
  21. PS97.
    D. Pointcheval and J. Stern: New Blind Signatures Equivalent to Factorization, Proceedings of the 4th ACM Conference on Computer and Communications Security (CCS)’ 97, pp. 92–99, ACM Press, 1997.Google Scholar
  22. PS00.
    D. Pointcheval and J. Stern: Security Arguments for Digital Signatures and Blind Signatures, Journal of Cryptology, vol. 13(3), pp. 361–396, 2000.zbMATHCrossRefGoogle Scholar
  23. RSA78.
    R.L. Rivest, A. Shamir and L. Adleman: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, vol. 21, pp. 120–126, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  24. S96.
    C.P. Schnorr: Security of 2 t -Root Identification and Signatures, Crypto’ 96, Lecture Notes in Computer Science, vol. 1109, pp. 143–156, Springer Verlag, 1996.Google Scholar
  25. S97.
    C.P. Schnorr: Erratum: Security of 2 t -Root Identification and Signatures, in Crypto’ 97, Lecture Notes in Computer Science, vol 1294, page 540, Springer Verlag, 1997.Google Scholar
  26. Sh99.
    V. Shoup: On the Security of a Practical Identification Scheme, Journal of Cryptology, vol. 12, pp. 247–260, 1999.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Roger Fischlin
    • 1
  1. 1.Johann Wolfgang Goethe-UniversityFrankfurt am MainGermany

Personalised recommendations