Advertisement

A 27/26-Approximation Algorithm for the Chromatic Sum Coloring of Bipartite Graphs

  • Krzysztof Giaro
  • Robert Janczewski
  • Marek Kubale
  • Michał Małafiejski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2462)

Abstract

We consider the Chromatic Sum Problem on bipartite graphs which appears to be much harder than the classical Chromatic Number Problem. We prove that the Crmatic Sum Problem is NP-complete on planar bipartite graphs with ∇≤ 5, but polynomial on bipartite graphs with ∇≤ 3, for which we construct an O(n 2)-time algorithm. Hence, we tighten the borderline of intractability for this problem on bipartite graphs with bounded degree, namely: the case ∇ = 3 is easy, ∇ = 5 is hard. Moreover, we construct a 27/26-approximation algorithm for this problem thus improving the best known approximation ratio of 10/9.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Noy A., Bellare M., Halldórsson M.M., Shachnai H., Tamir T.: On chromatic sums and distributed resource allocation. Information and Computation 140 (1998) 183–202zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Noy A., Kortsarz G.: Minimum color sum of bipartite graphs. Journal of Algorithms 28 (1998) 339–365zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dyer M.E., Frieze A.M.: Planar 3DM is NP-complete. Journal of Algorithms 7 (1986) 174–184zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Garey M.R., ohnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  5. 5.
    Giaro K., Kubale M.: Edge-chromatic sum of trees and bounded cyclicity graphs. Inf. Proc. Letters 75 (2000) 65–69Google Scholar
  6. 6.
    Kubicka E., Schwenk A.J.: An introduction to chromatic sums. Proceedings of ACM Computer Science Conference (1989) 39–45Google Scholar
  7. 7.
    Małafiejski M.: The complexity of the chromatic sum problem on planar graphs and regular graphs. The First Cologne Twente Workshop on Graphs and Combinatorial Optimization, Cologne (2001), Electronic Notes in Discrete Mathematics 8 (2001)Google Scholar
  8. 8.
    Małafiejski M.: Scheduling Multiprocessor Tasks to Minimize Mean FlowTime (in Polish), Ph.D. Thesis, Gdańsk University of Technology (2002)Google Scholar
  9. 9.
    Nicolso S., Sarrafzadeh M., Song X.: On the sum coloring problem on interval graphs. Algorithmica 23 (1999) 109–126CrossRefMathSciNetGoogle Scholar
  10. 10.
    Papadimitriou C.H., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, NewJersey (1982)zbMATHGoogle Scholar
  11. 11.
    Szkaliczki T.: Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete. SIAM Journal on Computing 29 (1999) 274–287zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Krzysztof Giaro
    • 1
  • Robert Janczewski
    • 1
  • Marek Kubale
    • 1
  • Michał Małafiejski
    • 1
  1. 1.Foundations of Informatics DepartmentGdańsk University of TechnologyPoland

Personalised recommendations