A Primal Approach to the Stable Set Problem

  • Claudio Gentile
  • Utz-Uwe Haus 
  • Matthias Köppe
  • Giovanni Rinaldi
  • Robert Weismantel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2461)

Abstract

We present a new “primal” algorithm for the stable set problem. It is based on a purely combinatorial construction that can transform every graph into a perfect graph by replacing nodes with sets of new nodes. The transformation is done in such a way that every stable set in the perfect graph corresponds to a stable set in the original graph. The algorithm keeps a formulation of the stable set problem in a simplex-type tableau whose associated basic feasible solution is the incidence vector of the best known stable set. The combinatorial graph transformations are performed by substitutions in the generators of the feasible region. Each substitution cuts off a fractional neighbor of the current basic feasible solution. We show that “dual-type” polynomial-time separation algorithms carry over to our “primal” setting. Eventually, either a non-degenerate pivot leading to an integral basic feasible solution is performed, or the optimality of the current solution is proved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Egon Balas, Sebastián Ceria, Gérard Cornuéjols, and Gabor Pataki, Polyhedral methods for the maximum clique problem, In Johnson and Trick [12], pp. 11–28.Google Scholar
  2. [2]
    Egon Balas and Manfred W. Padberg, On the set-covering problem: II. An algorithm for set partitioning, Operations Research 23 (1975), 74–90.MATHMathSciNetGoogle Scholar
  3. [3]
    Claude Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe (1961), 114–115.Google Scholar
  4. [4]
    Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo, The maximum clique problem, Handbook of Combinatorial Optimization (Supplement Volume A) (D.-Z. Du and P.M. Pardalos, eds.), vol. 4, Kluwer Academic Publishers, Boston, MA, 1999.Google Scholar
  5. [5]
    Ralf Borndörfer, Aspects of set packing, partitioning, and covering, Dissertation, Technische Universität Berlin, 1998, published by Shaker-Verlag, Aachen.Google Scholar
  6. [6]
    Maria Chudnovski, Neil Robertson, Paul Seymour, and Robin Thomas, Talk given at the Oberwolfach meeting on Geometric Convex Combinatorics, June 2002.Google Scholar
  7. [7]
    Gérard Cornuéjols, Combinatorial optimization: Packing and covering, CBMSNSF Regional Conference Series in Applied Mathematics, no. 74, SIAM, Philadelphia, 2001.Google Scholar
  8. [8]
    A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson Property, Combinatorica 6 (1986), no. 4, 365–379.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Martin Grötschel, László Lovász, and Alexander Schrijver, Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2, Springer, Berlin, 1988.Google Scholar
  10. [10]
    Utz-Uwe Haus, Matthias Köppe, and Robert Weismantel, The Integral Basis Method for integer programming, Mathematical Methods of Operations Research 53 (2001), no. 3, 353–361.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    —, A primal all-integer algorithm based on irreducible solutions, To appear in Mathematical Programming Series B, preprint available from URL http://www.math.uni-magdeburg.de/~mkoeppe/art/haus-koeppe-weismantel-ibm-theory-rr.ps, 2001.
  12. [12]
    D. S. Johnson and M.A. Trick (eds.), Clique, coloring, and satisfiability: Second DIMACS implementation challenge, DIMACS, vol. 26, American Mathematical Society, 1996.Google Scholar
  13. [13]
    L. Lovász, Normal hypergraphs and the weak perfect graph conjecture, Topics on perfect graphs, North-Holland, Amsterdam, 1984, pp. 29–42.Google Scholar
  14. [14]
    G. L. Nemhauser and G. L. Sigismondi, A strong cutting plane / branch and bound algorithm for node packing, Journal of the Operational Research Society (1992), 443–457.Google Scholar
  15. [15]
    G. L. Nemhauser and L. E. Trotter, Properties of vertex packing and independent system polyhedra, Mathematical Programming 6 (1973), 48–61.CrossRefMathSciNetGoogle Scholar
  16. [16]
    M.W. Padberg, On the facial structure of set packing polyhedra, Mathematical Programming 5 (1973), 199–215.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Manfred W. Padberg and Saman Hong, On the symmetric travelling salesman problem: a computational study, Math. Programming Stud. (1980), no. 12, 78–107.Google Scholar
  18. [18]
    Richard D. Young, A simplified primal (all-integer) integer programming algorithm, Operations Research 16 (1968), no. 4, 750–782.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Claudio Gentile
    • 1
  • Utz-Uwe Haus 
    • 2
  • Matthias Köppe
    • 2
  • Giovanni Rinaldi
    • 1
  • Robert Weismantel
    • 2
  1. 1.Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”- CNRRomaItaly
  2. 2.Department of Mathematics/IMOOtto-von-Guericke-Universität MagdeburgGermany

Personalised recommendations